CRENATE phytoliths of the epidermis of the leaf blade of some species of Meliceae Link. ex Endl.: a morphometric analysis
UDC 582.52/.59:581.821
Abstract
The article analyzes specificity of Crenate phytoliths of Meliceae tribe using morphometric analysis. This phytolith morphotype is the most common one in the species of this tribe, and is also found in other grasses of Pooideae Benth. subfamily. We studied five species: Melica inaecquiglumis Boiss., M. altissima L., M. nutans L., M. taurica K. Koch, and Glyceria triflora (Korsh.) Kom. M. nutans was studied from two different specimens. Extracted phytoliths were looked at in the top projection. We estimated 17 morphometric parameters, including 9 of size and 8 of shape. Statistical treatment included descriptive statistics, Tukey test and discriminant analysis. Our results show that the greatest difference is found between average morphometrics of M. altissima and M. inaequiglumis. At the same time, phytoliths of G. trifloraare distinguished from M. nutans and M. altissima by the fewest traits. However, the multivariate discriminant analysis using all 17 parameters suggests that G. triflora is the most distinct from all other species. The results suggest that phytoliths could correctly classify 52 % cases of individual specimens, 58 % in species, and 88 % accuracy, when two genera were compared. Thus, interspecific difference is notable between Glyceria R. Br and Melica L., but less so within the latter genus. Some differences were noted between sections CILIATA and NUTANS in Melica genus.
Downloads
Metrics
References
Ball T. B., Brotherson J. D. 1992. The effect of varying environmental conditions on phytolith morphometries in two species of grass (Bouteloua curtipendula and Panicum virginatum). Scann. Microscopy 6(4): 1163–1181.
Ball T. B., Davis A., Evett R. R., Ladwig J. L., Tromp M., Out W. A., Portillo M. 2016. Morphometric analysis of phytoliths: recommendations towards standardization from the International Committee for Phytolith Morphometrics. J. Archaeol. Sci. 68: 106–111. DOI: 10.1016/j.jas.2015.03.023
Ball T. B., Gardner J. S., Nicole A. 1999. Identifying inflorescence phytoliths from selected species of wheat (Triticum monococcum, T. dicoccum, T. dicoccoides and T. aestivum) and barley (Hordeum vulgare and H. spontaneum) (Gramineae). Am. J. Bot. 86(11): 1615–1623. DOI: 10.2307/2656798
Blinnikov M. S., Hoffman B. R., Salova Yu. A. 2021. Modern analog assemblages of phytoliths under various plant communities of the Middle Volga and their applicability for archaeological reconstructions. The Volga River Region Archaeology (Povolzhskaya Arkheologiya) 4(28): 217–234. DOI: 10.24852/pa2021.4.38.217.234
Bremond L., Alexandre А., Peyron O., Guiot J. 2005. Grass water stress estimated from phytoliths in West Africa. J. Biogeogr. 32: 311–327. DOI: 10.1111/j.1365-2699.2004.01162.x
Bremond L., Alexandre A., Wooller M. J., Hély Ch., Williamson D., Schäfer P. A., Majule A., Guiot J. 2008. Phytolith indices as proxies of grass subfamilies on 193 East African tropical mountains. Glob. Planet. Change 61: 209–224. DOI: 10.1016/j.gloplacha.2007.08.016
Dunn R. E., Le T.-Y. T., Strömberg C. A. E. 2015. Light environment and epidermal cell morphology in grasses. Int. J. Plant Sci. 176(9): 832–847. DOI: 10.1086/683278
Ellis R. P. 1979. A procedure for standardizing comparative leaf anatomy in the Poaceae. II. The epidermis as seen in surfase view. Bothalia 12: 641–671.
Esau K. 1965. Plant Anatomy. New York: Wiley. 735 pp.
Fernandez M. G., Zucol A., Arriaga M. O. 2012. Comparative phytolith analysis of Festuca (Pooideae: Poaceae) species native to Tierra del Fuego, Argentina. Botany 90(11): 1113–1124. DOI: 10.1139/b2012-070
Гольева А. А. Фитолиты и их информационная роль в изучении природных и археологических объектов. М.; Сыктывкар: Элиста, Полтекс, 2001. 140 с.
Hodson M. J. Sangster A. G., Parry D. W. 1985. An ultrastructural study on the developmental phases and silicification of the glume of Phalaris canariensis L. Ann. of Bot. 55: 649–655. DOI: 10.1093/oxfordjournals.aob.a086944
Hošková K., Neustupa J., Pokorný P., Pokornáet A. 2022. Phylogenetic, ecological and intraindividual variability patterns in grass phytolith shape. Ann. of Bot. 129(3): 303–313. DOI: 10.1093/aob/mcab143.
Khodaverdi M., Mullinger M. D., Shafer H. R., Preston J. C. 2023. Melica as an emerging model system for comparative studies in temperate Pooideae grasses. Ann. of Bot. 132(7): 1175–1189. DOI: 10.1093/aob/mcad136
Крючкова Е. А., Олонова М. В., Баяхметов Е. Ж., Гудкова П. Д. Таксономическое значение строения эпидермы листовой пластинки на уровне секций Алтайских овсяниц (Festuca L.) // Проблемы ботаники Южной Сибири и Монголии, 2020. Т. 19, № 2. С. 117–122. DOI: 10.14258/pbssm.2020088
Mejia-saules Т., Bisby F. 2003. Silica bodies and hooked papillae in lemmas of Melica species (Gramineae: Pooideae). Bot. J. Linn. Soc. 14: 447–46. DOI: 10.1046/j.1095-8339.2003.00152.x
Metcalfe C. R. 1960. Anatomy of the Monocotyledons. I. Gramineae. Oxford: Clarendon Press. 731 pp.
Олонова М. В., Мезина Н. C. Фитолиты некоторых мезофильных видов мятликов (Poa L.) секции Stenopoa и возможность их использования в систематике // Вестник Томского государственного университета. Биология, 2014. № 1(13). C. 51–60.
Olonova N., Gudkova P., Shiposha V., Kriuchkova E., Mezina N., Blinnikov M. 2021. Phytoliths from some grasses (Poaceae) in arid lands of Xinjiang, China. Acta Biol. Sib. 7: 345–361. DOI: 10.3897/abs.7.e76105
Ortunez E., Cano-Ruiz J. 2013. Epidermal micromorphology of the genus Festuca L. subgenus Festuca (Poaceae). Plant Syst. and Evol. 299: 1471–1483. DOI: 10.1007/s00606-013-0809-7
Ortunez E., Fuente V. 2010. Epidermal micromorphology of the genus Festuca L. (Poaceae) in the Iberian Peninsula. Plant Syst. and Evol. 284, 3: 201–218. DOI: 10.1007/s00606-009-0248-7
Out W. A., Madella M. 2016. Morphometric distinction between bilobate phytoliths from Panicum miliaceum and Setaria italica leaves. Archaeol. Anthropol. Sci. 8(3): 505–521. DOI: 10.1007/s12520-015-0235-6
Portillo M., Ball T. B., Manwaring J. 2006. Morphometric analysis of inflorescence phytoliths produced by Avena sativa L. and Avena strigosa Schreb. Econ. Bot. 60(2): 121–129. DOI: 10.1663/0013-0001(2006)60[121:MAOIPP]2.0.CO;2
Rodionov A. V., Kotsinyan A. R., Gnutikov A. A., Dobroradova M. A., Machs E. M. 2013. Variability of the ITS1-5.8S rDNA-ITS2 sequence during the divergence of sweet-grass species (Glyceria R. Br.). Russian Journal of Genetics: Applied Research 3(2): 83–90. DOI: 10.1134/S2079059713020068
Соломонова М. Ю., Сперанская Н. Ю., Блинников М. С., Жембровская Т. А., Силантьева М. М. Разделение волнистых и полилопастных форм фитолитов морфотипа «crenate» у видов Pooideae Benth. юга Западной Сибири на основе филогенетических данных // Turczaninowia, 2022. Т. 25, № 4. С. 122–135. DOI: 10.14258/turczaninowia.25.4.13
Solomonova M. Yu., Zhembrovskaya T. A., Lyashchenko A. D., Kotov S. D., Speranskaya N. Yu. 2023. Environmental impact on phytolith morphometric parameters by example crenate morphotype of Dactylis glomerata L. leaves (South of Western Siberia, Russia). Acta Biol. Sib. 9: 953–973. DOI: 10.5281/zenodo.10101537.
Цвелев Н. Н. О видах секции Melica рода Melica (Poaceae) в России // Бот. журн., 2012. Т. 97, № 2. С. 252–257.
Wang C., Lu H., Zhan J., Mao L., Ge Y. 2019. Bulliform phytolith size of rice and its correlation with hydrothermal environment: a preliminary morphological study on species in Southern China. Front. Plant Sci. 10: 1037. DOI: 10.3389/fpls.2019.01037
Wang J., Liu L., Gao Z., Jie D. 2018. Effects of available soil silicon on the formation of phytoliths in Phragmites australis (Cav.) Trin. ex Streud, Poaceae. Bot. Let. 166(1): 51–63. DOI: 10.1080/23818107.2018.1544505
Yost C. L., Michas M. C., Adams K. R., Swarts K., Puseman K., Ball T. 2021. An in situ and morphometric study of maize (Zea mays L.) cob rondel phytoliths from Southwestern North American landraces. J. Archaeol. Sci. Reports 35: 102732. DOI: 10.1016/j.jasrep.2020.102732
Turczaninowia is a golden publisher, as we allow self-archiving, but most importantly we are fully transparent about your rights.
Authors may present and discuss their findings ahead of publication: at biological or scientific conferences, on preprint servers, in public databases, and in blogs, wikis, tweets, and other informal communication channels.
Turczaninowia allows authors to deposit manuscripts (currently under review or those for intended submission to Turczaninowia) in non-commercial, pre-print servers such as ArXiv.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
