DNA imaging cytometry in plant analysis: a review

UDC 58.086+576.08+57.086.88

Keywords: FCM, flow cytometry, genome size, hybrids, ICM, image cytometry, plants, polyploids

Abstract

The review focuses on image cytometry of plant cells, used to determine the ploidy level and genome size of plants. The review presents examples of basic plant studies using the method of analyzing static images of nuclei, the dyes used, sample preparation methods, data analysis, laboratory equipment and software. It also provides an application of the image cytometry in the study of vascular plants. An important parameter of any method is reproducibility and comparative characteristics relative to other methods. The article compares absolute values of plant genome size measurements made by image cytometry and flow cytometry, as well as the necessary minimum parameters to ensure measurement accuracy and limitations of the method. The review will be useful when planning an experiment on DNA content analysis without using expensive equipment – flow cytometers, but only on the basis of optical or fluorescence microscopy data.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Abreu I. S., Carvalho C. R., Clarindo W. R. 2008. Chromosomal DNA content of sweet pepper determined by association of cytogenetic and cytometric tools. Plant Cell Rep. 27: 1227–1233.
Allalou A., Wählby C. 2009. BlobFinder, a tool for fluorescence microscopy image cytometry. Comput Methods Programs Biomed. 94(1): 58–65. DOI: 10.1016/j.cmpb.2008.08.006
Aslan M. K., Ding Y., Stavrakis S., Demello A. J. 2023. Smartphone imaging flow cytometry for high-throughput single-cell analysis. Anal. Chem. 95(39): 14526–14532.
Ascari L., Novara C., Dusio V., Oddi L., Siniscalco C. 2020. Quantitative methods in microscopy to assess pollen viability in different plant taxa. Plant Reprod. 33(3–4): 205–219.
Baranyi M., Greilhuber J. 1999. Genome size in Allium: in quest of reproducible data. Ann. Bot. Fenn. 83: 687–695.
Benchaib M., Delorme R., Bryon P. A., Souchier C. 1996. Fluorescence image cytometry of DNA content: a comparative study of three fluorochromes and four fixation protocols. In: Fluorescence microscopy and fluorescent probes. Boston, MA: Springer US. Pp. 197–201.
Bennett M. D., Leitch I. J., Price H. J., Johnston J. S. 2003. Comparisons with Caenorhabditis (100 Mb) and Drosophila ( 175 Mb) using flow cytometry show genome size in Arabidopsis to be 157 Mb and thus 25% larger than the Arabidopsis genome initiative estimate of 125 Mb. Ann. bot. 91(5): 547–557.
Bennett M. D., Smith J. B. 1976. Nuclear DNA amounts in angiosperms. Philos. Trans. R. Soc. B. 274(933): 227–274.
Besse L., Rumiac T., Reynaud-Angelin A., Messaoudi C., Soler M. N., Lambert S. A., Pennaneach V. 2023. Protocol for automated multivariate quantitative-image-based cytometry analysis by fluorescence microscopy of asynchronous adherent cells. STAR protocols 4(3): 102446. DOI: 10.1016/j.xpro.2023.102446
Bhosale R., Boudolf V., Cuevas F., Lu R., Eekhout T., Hu, Z., De Veylder L. 2018. A spatiotemporal DNA endoploidy map of the Arabidopsis root reveals roles for the endocycle in root development and stress adaptation. Plant Cell 30(10): 2330–2351.
Bourdon M., Coriton O., Pirrello J., Cheniclet C., Brown S.C., Poujol C., Chevalier C., Renaudin J. P., Frangne N. 2011. In planta quantification of endoreduplication using fluorescent in situ hybridization (FISH). Plant J. 66: 1089–1099.
Caceres M. E., Pupilli F., Quarín C. L., Arcioni S. 1999. Feulgen-DNA densitometry of embryo sacs permits discrimination between sexual and apomictic plants in Paspalum simplex. Euphytica 110(3): 161–167.
Carotenuto G., Sciascia I., Oddi L. 2019. Size matters: three methods for estimating nuclear size in mycorrhizal roots of Medicago truncatula by image analysis. BMC Plant Biol. 19: 180. DOI: 10.1186/s12870-019-1791-1
Carvalho C. R., Clarindo W. R., Abreu I. S. 2011. Image cytometry: nuclear and chromosomal DNA quantification. In: H. Chiarini-Garcia, R. C. N. Melo (eds.). Light microscopy. Methods Mol. Bio. Vol. 689. New York: Humana Press, c/o Springer Science+Business Media, LLC. Pp. 51–68.
Čertnerová D. 2021. Meet the challenges of analyzing small genomes using flow cytometry. Cytometry: 1–3.
Cheng S., Fu S., Kim Y. M., Song W., Li Y., Xue Y., Tian L. 2021. Single-cell cytometry via multiplexed fluorescence prediction by label-free reflectance microscopy. Sci. Adv. 7(3): eabe0431.
Chiarini-Garcia H., Melo R. C. N. (eds.). 2011. Light Microscopy. Methods in Mol. Biol. Vol. 689. New York: Humana Press, c/o Springer Science+Business Media, LLC. 244 pp.
Chieco P., Jonker A., Van Noorden C. J. F. 2001. Image Cytometry. Microscopy Handbooks 46. Springer: New York. 116 pp.
Dao D., Fraser A. N., Hung J., Ljosa V., Singh S., Carpenter A. E. 2016. Cell Profiler analyst: interactive data exploration, analysis and classification of large biological image sets. Bioinformatics 32: 3210–3212.
Didenko V. V. 2017. Fast detection of DNA damage: methods and protocols. New York: Springer. 216 pp.
Diebold E. D., Buckley B. W., Gossett D. R., Jalali B. 2013. Digitally synthesized beat frequency multiplexing for sub-millisecond fluorescence microscopy. Nat. Photonics 7(10): 806–810.
Dolezel J., Greilhuber J., Suda J. 2007. Flow cytometry with plant cells: analysis of genes, chromosomes and genomes. Weinheim: John Wiley & Sons: 455.
Doležel J., Sgorbati S., Lucretti S. 1992. Comparison of three DNA fluorochromes for flow cytometric estimation of nuclear DNA content in plants. Physiol. Plant. 85(4): 625–631.
Ernst L. G. 1994. MPV microscope photometer with measuring diaphragm. Germany: User manual. 16 pp.
Feulgen R., Rossenbeck H. 1924. Mikroskopisch-chemischer Nachweis einer Nucleinsaure vom Typus der Thymonucleinsaure und die-darauf beruhende elektive Farbung von Zellkernen in mikroskopischen Praparat. Z. Phys. Chem. 135: 203–248. DOI: 10.1515/bchm2.1924.135.5-6.203
Fontenete S., Carvalho D., Lourenço A., Guimarães N., Madureira P., Figueiredo C., Azevedo N. F. 2016. FISHji: New ImageJ macros for the quantification of fluorescence in epifluorescence images. Biochem. Eng. J. 112: 61–69.
Frossasco A., Trenchi A., Urdampilleta J. D. 2015. Estimación del tamaño del genoma en especies de la tribu Cestreae (Solanaceae) mediante citometría de imagen. Bol. Soc. Argent Bot. 50(3): 353–360.
Глушен С. В., Павлова И. В., Коломиец О. О., Белокурская Е. Н. 2013. Экспресс-метод определения плоидности томатов // Актуальные проблемы изучения и сохранения фито- и микобиоты: сб. ст. II-й междунар. науч.-практ. конф. (Минск, 12–14 ноября 2013 г.). Минск: Изд. центр БГУ, 2013. С. 393–396.
Gregory T. R. 2001. The bigger the C-value, the larger the cell: genome size and red blood cell size in vertebrates. Blood Cell Mol. Dis. 27: 830–843.
Gregory T. R. 2003. Genome size estimates for two important freshwater molluscs, the zebra mussel (Dreissena polymorpha) and the schistosomiasis vector snail (Biomphalaria glabrata). Genome 46: 841–844.
Greilhuber J. 2008. Cytochemistry and C-values: the less-well-known world of nuclear DNA amounts. Ann. Bot. Fenn. 101: 791 804.
Greilhuber J., Doležel J., Lysák M., Bennett M.D. 2005. The origin, evolution, and proposed stabilization of the terms ‘genome size’ and ‘C-value’ to describe nuclear DNA contents. Ann. Bot. Fenn. 95: 255–260.
Greilhuber J., Ebert I. 1994. Genome size variation in Pisum sativum. Genome 37: 646–655.
Greilhuber J., Obermayer R. 1997. Genome size and maturity group in Glycine max (soybean). Heredity 78(5): 547–551.
Heitkam T., Garcia S. 2023. Plant cytogenetics and cytogenomics. Springer Nature: 306.
Hof J. V. 1965. Relationships between mitotic cycle duration, S period duration and the average rate of DNA synthesis in the root meristem cells of several plants. Exp. Cell Res. 39(1): 48–58. DOI: 10.1016/0014-4827(65)90006-6. PMID: 5831250
Jónás V. Z., Paulik R., Kozlovszky M., Molnár B. 2022. Calibration-aimed comparison of image-cytometry-and flow-cytometry-based approaches of ploidy analysis. Sensors 22(18): 6952.
Kajstura M., Halicka H. D., Pryjma J., Darzynkiewicz Z. 2007. Discontinuous fragmentation of nuclear DNA during apoptosis revealed by discrete “sub-G1” peaks on DNA content histograms. Cytometry 71: 125–131.
Katagiri Y., Hasegawa J., Fujikura U., Hoshino R., Matsunaga S., Tsukaya H. 2016. The coordination of ploidy and cell size differs between cell layers in leaves. Development 143(7): 1120–1125.
Kennedy K. M. 2022. The rapid enumeration of a mixed culture of S. cerevisiae and L. plantarum in beer using image-based cytometry. Electronic Theses and Dissertations: 3634. URL: https://digitalcommons.library.umaine.edu/etd/3634
Коломиец О. О., Глушен С. В. Факторы, влияющие на измерение ДНК методом статической цитометрии // Строение организма человека и животных в норме, патологии и эксперименте: Сб. науч. работ, посвящ. 85-летию со дня рождения проф. А. С. Леонтюка. Под ред. Т. М. Студеникиной, И. А. Мельникова, В. С. Гайдука. Минск: Изд-во Белорус. гос. мед. ун-та, 2017. С. 290–294.
Коломиец O. O., Глушен C. В. Суточный ритм роста листьев и пролиферации клеток у перца стручкового (Capsicum annuum L.) // Известия Национальной академии наук Беларуси. Серия биологических наук, 2019. Т. 64, № 4. С. 448–455.
Коломиец О. О., Павлова И. В., Глушен С. В. 2015. Цитометрический анализ плоидности и пролиферации клеток у растущих in vitro линий овощных культур // Труды Белорусского государственного университета. Серия: Физиологические, биохимические и молекулярные основы функционирования биосистем, 2015. Т. 10, № 1. С. 116–121.
Колтунова А. М., Панарин Р. Н., Уварова О. В., Куцев М. Г. Приложение BIODECOD для ДНК-цитометрии растений на основе анализа изображений // Идеи Н. В. Павлова глазами нового поколения ботаников: Тезисы докладов международной научно-практической конференции молодых ученых (г. Алматы, 25–27 сентября 2024 г.). Алматы: Институт ботаники и фитоинтродукции, 2024). [In Press]
Kron P., Husband B. C. 2012. Using flow cytometry to estimate pollen DNA content: improved methodology and applications. Ann. bot. 110(5): 1067–1078.
Kuksin D., Kuksin C. A., Qiu J., Chan L. L. 2016. Cellometer image cytometry as a complementary tool to flow cytometry for verifying gated cell populations. Anal. Biochem. 503: 1–7.
Lacerda M. M., Silva J. C., Vieira A. T., Clarindo W. R. 2019. Cytogenetic characterization of Passiflora megacoriacea K. Port. Utl. employing image cytometry. Cytologia 84(4): 353–357.
Lavrekha V. V., Pasternak T., Ivanov V. B., Palme K., Mironova V. V. 2017. 3D analysis of mitosis distribution highlights the longitudinal zonation and diarch symmetry in proliferation activity of the Arabidopsis thaliana root meristem. Plant J. 92: 834–845.
Leitch I. J., Johnston E., Pellicer J., Hidalgo O., Bennett M. D. 2019. Plant DNA C-values Database. Release 7.1. URL: https://cvalues.science.kew.org/
Levi M., Tarquini F., Sgorbati S., Sparvoli E. 1986. Determination of DNA content by static cytofluorimetry in nuclei released from fixed plant tissue. Protoplasma 132: 64–68.
Loureiro J., Rodriguez E., Dolezel J., Santos C. 2007. Two new nuclear isolation buffers for plant DNA flow cytometry: a test with 37 species. Ann. Bot. 100: 875–888.
Maciorowski Z., Veilleux C., Gibaud A., Bourgeois C. A., Klijanienko J., Boenders J., Vielh P. 1997. Comparison of fixation procedures for fluorescent quantitation of DNA content using image cytometry. Cytom.: J. Int. Soc. Anal. Cytol.28(2): 123–129.
Martín-Martín R. P., Salvador-Soler N., Lluch J. R., Garreta A. G. 2023. Nuclear DNA content estimation of seaweed by fluorimetry analysis. In: Plant Cytogenetics and Cytogenomics: Methods and Protocols. New York, NY: Springer US. Pp. 65 77.
Mascagni F., Barghini E., Ceccarelli M., Baldoni L., Trapero C., Díez C. M., Giordani T. 2022. The singular evolution of Olea genome structure. Front. Plant Sci. 13: 869048.
McQuin C., Goodman A., Chernyshev V., Kamentsky L., Cimini B. A., Karhohs K. W., Doan M., Ding L., Rafelski S. M., Thirstrup D. 2018. Cell Profiler 3.0: Next-generation image processing for biology. PLoS Biol 16: 1–17.
Mello M. L., de Campos V. B. 2017. The Feulgen reaction: A brief review and new perspectives. Acta Histochem. 119(6): 603–609.
Munoz H. E. 2020. Physical phenotyping of neutrophil NETosis using fluorescence-imaging deformability cytometry. A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Bioengineering. Los Angeles: University of California. 157 pp.
Nagaki K., Furuta T., Yamaji N., Kuniyoshi D., Ishihara M., Kishima Y., Takatsuka H. 2021. Effectiveness of Create ML in microscopy image classifications: A simple and inexpensive deep learning pipeline for non-data scientists. Chromosome Res. 29: 361–371.
Oberhammer F., Wilson J. W., Dive C., Morris I. D., Hickman J. A., Wakeling A. E., Walker P. R., Sikorska M. 1993. Apoptotic death in epithelial cells: cleavage of DNA to 300 and 50 kb fragments prior to or in the absence of internucleosomal degradation of DNA. EMBO J. 12: 3679–3684.
Oliveira S. C. 2017. Origin of the allotriploid “Híbrido de Timor” through a karyotype comparison with its Coffea ancestors. Tese apresentada à Universidade Federal do Espírito Santo, como parte das exigências do Programa de PósGraduação em Genética e Melhoramento, para obtenção do título de Doctor Scientiae. Brasil: Espírito Santo. 60 pp.
Pasternak T., Haser T., Falk T., Ronneberger O., Palme K., Otten L. 2017. A 3D digital atlas of the Nicotiana tabacum root tip and its use to investigate changes in the root apical meristem induced by the Agrobacterium 6b oncogene. Plant J. 92: 31–42.
Pektas Z. O., Keskin A., Ömer G., Karslioglu Y. 2006. Evaluation of nuclear ˘ morphometry and DNA ploidy status for detection of malignant and premalignant oral lesions: quantitative cytologic assessment and review of methods for cytomorphometric measurements. J. Oral Maxillofac. Surg. 64: 628–635.
Пичугин Ю. Г., Семьянов К. А., Чернышев А. В., Пальчикова И. Г., Омельянчук Л. В., Мальцев В. П. Особенности цитометрических методов определения содержания ДНК в ядре // Цитология, 2012. Т. 54, № 2. С. 185–190.
Pozarowski P., Holden E., Darzynkiewicz Z. 2013. Laser scanning cytometry: principles and applications. An update. Methods Mol. Biol. 913:187–212.
Praça-Fontes M. M., Carvalho C. R., Clarindo W. R. 2011a. C-value reassessment of plant standards: an image cytometry approach. Plant cell Rep. 30: 2303–2312.
Praça -Fontes M. M., Carvalho C. R., Clarindo W. R., Cruz C. D. 2011b. Revisiting the DNA C-values of the genome size-standards used in plant flow cytometry to choose the “best primary standards”. Plant Cell Rep. 30: 1183–1191. DOI: 10.1007/s00299-011-1026-x
Praça-Fontes M. M., Carvalho C. R., Novaes C. R. 2009. Nuclear DNA content of three Eucalyptus species estimated by flow and image cytometry. Austral. J. Bot. 57(6): 524–531.
Rao B. V., Barathi M., Dev T. S., Singh M. 2015. Image cytometric analysis of nuclear and chromosomal DNA contents in two cytotypes of Aloe vera (L.) Burm. f. Nucleus (India)58: 53–57.
Rodenacker K., Bengtsson E. 2003. A feature set for cytometry on digitized microscopic images. Anal. Cell. Pathol. 25: 1–36.
Rosado T. B., Carvalho C. R., Saraiva L. S. 2005. DNA content of maize metaphasic A and B chromosomes determined by image cytometry. Maize Genet Cooperation Newsl 79: 48–49.
Roukos V., Pegoraro G., Voss T. C., Misteli T. 2015. Cell cycle staging of individual cells by fluorescence microscopy. Nature protocols 10(2): 334–348.
Salvador-Soler N., Macaya E. C., Rull-Lluch J., Gómez-Garreta A. 2016. Nuclear DNA content in Gelidium chilense (Gelidiales, Rhodophyta) from the Chilean coast. Rev. Biol. Mar. Oceanogr. 51(1):113–122. DOI 10.4067/S0718-19572016000100011
Santisteban M. S., Montmasson M. P., Giroud F., Ronot X., Brugal G. 1992. Fluorescence image cytometry of nuclear DNA content versus chromatin pattern: a comparative study of ten fluorochromes. J. Histochem. Cytochem. 40(11): 1789–1797.
Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T. 2012. Fiji: an open-source platform for biological-image analysis. Nat Methods 9(7): 676–682.
Skaptsov M. V., Kutsev M. G., Smirnov S. V., Vaganov A. V., Uvarova O. V., Shmakov A. I. 2024. Standards in plant flow cytometry: an overview, polymorphism and linearity issues. Turczaninowia 27, 2: 86–104. DOI: 10.14258/turczaninowia.27.2.10
Slavík J. 1996. Fluorescence microscopy and fluorescent probes. New York: Plenum Press. Pp. 306.
Sliwinska E., Loureiro J., Leitch I. J., Šmarda P., Bainard J., Bureš P., Chumová Z., Horová L., Koutecký P., Lučanová M., Trávníček P., Galbraith D. W. 2022. Application-based guidelines for best practices in plant flow cytometry. Cytom. A: Special Issue: Best Practices in Plant Cytometry Part 2 101(9): 749–781. DOI: 10.1002/cyto.a.24499
Son J., Mandracchia B., Trenkle A. D. S., Kwong G. A., Jia S. 2023. Portable light-sheet optofluidic microscopy for 3D fluorescence imaging flow cytometry. Lab Chip 23(4): 624–630.
Strgulc K. S., Dolenc K. J. 2015. Sexual reproduction of knotweed (Fallopia sect. Reynoutria) in Slovenia. Preslia 87(1): 17–30.
Temsch E. M., Greilhuber J., Krisai R. 1998. Genome size in Sphagnum (Peat Moss). Bot. Acta 111: 325–330.
Vilhar B., Dermastia M. 2002. Standardisation of instrumentation in plant DNA image cytometry. Acta Bot. Croat. 61(1): 11–26.
Vilhar B., Greilhuber J., Koce J. D., Temsch E. M., Dermastia M. 2001. Plant genome size measurement with DNA image cytometry. Ann. Bot. 87: 719–728. DOI: 10.1006/anbo.2001.1394
Yang D., Subramanian G., Duan J., Gao S., Bai L., Chandramohanadas R., Ai Y. 2017. A portable image-based cytometer for rapid malaria detection and quantification. PLOS ONE 12(6): e0179161. DOI: 10.1371/journal.pone.0179161
Yuan X., Darcie T., Wei Z., Aitchison J. S. 2022. Microchip imaging cytometer: making healthcare available, accessible, and affordable. Opto-Electronic Advances 5(11): 210130-1–210130-15.
Zhao P. Z., Ouyang L. L., Shen A. L., Wang Y. L. 2022. The cell cycle of phytoplankton: A review. J. World Aquac. Soc. 53(4): 799–815.
Żurek-Biesiada D. 2015. Photoconversion of DNA-binding dyes and its application in super-resolution microscopy (Doctoral dissertation). Kraków: Jagiellonian University. 105 pp.
Published
2024-11-10
How to Cite
Kutsev M. G., Skaptsov M. V., Koltunova A. M., Uvarova O. V. DNA imaging cytometry in plant analysis: a review // Turczaninowia, 2024. Vol. 27, № 3. P. 141–158 DOI: 10.14258/turczaninowia.27.3.14. URL: http://turczaninowia.asu.ru/article/view/16101.
Section
Science articles

Most read articles by the same author(s)

1 2 > >>