Универсальные ПЦР-праймеры для идентификации видов рода Sanguisorba и других представителей семейства Rosaceae

УДК 582.734.4+575.174.015.3

  • Анастасия Максимовна Колтунова Алтайский государственный университет https://orcid.org/0000-0002-3753-7958 Email: koltunova.anas@yandex.ru
  • Максим Геннадьевич Куцев Алтайский государственный университет https://orcid.org/0000-0003-2284-6851 Email: m_kucev@mail.ru
  • Рамазан Алибегович Муртазалиев Прикаспийский институт биологических ресурсов Дагестанского ФИЦ РАН https://orcid.org/0000-0002-2895-213X Email: murtazaliev.ra@yandex.ru
Ключевые слова: видоспецифичные праймеры, кровохлебка, пластидный геном, филогенетический анализ

Аннотация

Разработано семь пар праймеров для амплификации некодирующих участков ДНК хлоропластов с помощью полимеразной цепной реакции (ПЦР). Для выяснения универсальности праймеров мы использовали их для амплификации фрагментов ДНК различных видов растений семейства Rosaceae. Праймеры являются пригодными для генотипирования видов рода Sanguisorba и некоторых видов семейства Rosaceae. С помощью данных праймеров возможно амплифицировать некодирующие полиморфные области хлоропластной ДНК, а значит, они могут быть использованы при выявлении межвидовых различий и в популяционной генетике растений.

Скачивания

Данные скачивания пока недоступны.

Metrics

Загрузка метрик ...

Литература

Agarwal M., Shrivastava N., Padh H. 2008. Advances in molecular marker techniques and their applications in plant sciences. Plant Cell Rep. 27: 617–631.
Casper B., Jackson R. 1997. Plant competition underground. Annual Review of Ecology and Systematics 28: 545–570.
Freitas A., da Anunciacao R., D’ Oliveira-Matielo C., Stefenon V. 2018. Chloroplast DNA: A promising source of information for plant phylogeny and traceability. J. Mol. Biol. Methods 1, 1. DOI: 10.1007/978-1-4615-3276-7
Govaerts R., Nic Lughadha E., Black N., Turner R., Paton A. 2021. The world checklist of vascular plants, a continuously updated resource for exploring global plant diversity. Scientific Data 8: 215. DOI: 10.1038/s41597-021-00997-6
Guo D., Chen J., Tan L., Jin M., Ju F., Cao Z. 2019. Terpene glycosides from Sanguisorba officinalis and their anti-inflammatory effects. Molecules 24: 2906. DOI: 10.3390/molecules24162906
Hartl D., Clark A. 2007. Principles of population genetics. Sinauer Associates: 37–63.
Hebert P., Cywinska A., Ball S., Waard J. 2003. Biological identifications through DNA barcodes. Proceedings of the Royal Society B: Biological Sciences 270: 313–321.
Hong S., Cheon K., Yoo K., Lee H., Cho K., Suh J., Kim S., Nam, J., Sohn H., Kim Y. 2017. Complete chloroplast genome sequences and comparative analysis of Chenopodium quinoa and C. album. Front. Plant Sci. 8: 1696.
Im S., Wang Z., Lim S., Lee O., Kang I. 2017. Bioactivity-guided isolation and identification of anti-adipogenic compounds from Sanguisorba officinalis. Pharm. Biol. 55: 2057–2064. DOI: 10.1080/13880209.2017.1357736
Inkyu P., Junho S., Sungyu Y., Goya C., Byeongcheol M. 2021. A comprehensive study of the genus Sanguisorba (Rosaceae) based on the floral micromorphology, palynology, and plastome analysis. Genes 12: 1764. DOI: 10.3390/genes12111764
Jang E., Kim S., Lee N., Kim H., Chae S., Han C. 2018. Sanguisorba officinalis extract, ziyuglycoside I and II exhibit antiviral effects against hepatitis B virus. Eur. J. Integr. Med. 20: 165–172. DOI: 10.1016/j.eujim.2018.05.009
Ji H., Ahn K., Cho H., Kim H., Kim Y., Kim O. 2018. Sanguisorba officinalis L. extracts activate wnt/β-catenin pathway, and subsequently control adipo-osteogenic differentiation. Biochem. Biophys. Res. Commun. 504: 352–358. DOI: 10.1016/j.bbrc.2018.08.196
Jung D., Lee O., Kang I. 2016. Sanguisorba officinalis L. extracts exert antiobesity effects in 3t3-l1 adipocytes and c57bl/6j mice fed high-fat diets. J. Med. Food 19: 768–779. DOI: 10.1089/jmf.2016.3704
Kim H., Jang E., Kim S., Choi, J., Lee N., Kim D. 2018. Preclinical evaluation of in vitro and in vivo antiviral activities of kct-01, a new herbal formula against hepatitis b virus. evidence-based complement. Altern. Med. 2018: 1–9. DOI: 10.1155/2018/10735092018
King R., Read D., Traugott M., Symondson W. 2008. Molecular analysis of predation: a review of best practice for DNA-based approaches. Molecular Ecology 17: 947–963.
Koressaar T., Lepamets M., Kaplinski L., Raime K., Andreson R., Remm M. 2018. Primer3_masker: integrating masking of template sequence with primer design software. Bioinformatics 34: 1937–1938.
Kuang H., Li H., Wang Q., Yang B., Wang Z., Xia Y. 2011. Triterpenoids from the roots of Sanguisorba tenuifolia var. alba. Molecules 16: 4642–4651. DOI: 10.3390/molecules16064642
Kumar S., Stecher G., Li M., Knyaz C., Tamura K. 2018. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35(6): 1547–1549.
Куцев М. Г., Синицына Т. А., Кондо К. Генетические различия между тремя видами Sanguisorba L. из Западной Сибири на основе на основе метода случайно амплифицированных фрагментов ДНК (RAF) // Turczaninowia, 2013. Т. 16, № 2. С. 134–137.
Lee S., Heo Ki., Cho J., Lee C., Chen W., Kim S. 2011. New insights into pollen morphology and its implications in the phylogeny of Sanguisorba L. (Rosaceae; Sanguisorbeae). Plant Syst. Evol. 291: 227–242. DOI: 10.1007/s00606-010-0384-0.
Leister D., Pesaresi P. 2018. The genomic era of chloroplast research. Ann. Plant Rev. 13: 1–29. DOI: 10.1002/9781119312994.apr0121
Lenzi A., Orlandini A., Bulgari R., Ferrante A., Bruschi P. 2019. Antioxidant and mineral composition of three wild leafy species: a comparison between microgreens and baby greens. Foods 8: 487. DOI: 10.3390/foods8100487
Li C., Ikeda H., Ohba H. 2003. Sanguisorba L. In: Z. Y. Wu, P. H. Rawen, D. Y. Hong (eds.). Flora of China. Vol. 9. Beijing: Science Press; St. Louis: Missouri Botanical Garden Press. Pp. 384–387.
Linder C., Moore L., Jackson R. 2000. A universal molecular method for identifying underground plant parts to species. Molecular Ecology 9: 1549–1559.
Linnaeus C. 1753. Species plantarum. Tomus 1: 116.
Liu M., Liao M., Dai C., Chen J., Yang C. 2016. Sanguisorba officinalis L. synergistically enhanced 5-fluorouracil cytotoxicity in colorectal cancer cells by promoting a reactive oxygen species-mediated, mitochondria-caspase-dependent apoptotic pathway. Sci. Rep. 6: 34245. DOI: 10.1038/srep34245
Mader M., Pakull B., Blanc-Jolivet C., Paulini-Drewes M., Bouda Z., Degen B., Small I., Kersten B. 2018. Complete chloroplast genome sequences of four meliaceae species and comparative analyses. Int. J. Mol. Sci. 19: 701.
Meng X., Tang G., Liu P., Zhao C., Liu Q., Li H. 2020. Antioxidant activity and hepatoprotective effect of 10 medicinal herbs on ccl4-induced liver injury in mice. World J. Gastroenterol. 26: 5629–5645. DOI: 10.3748/wjg.v26.i37.5629
Morgan D., Soltis D., Robertson K. 1994. Systematic and evolutionary implications of rbcL sequence variation in Rosaceae. Am. J. Bot. 81: 890–903.
Nam S., Lkhagvasuren K., Seo H., Kim J. 2017. Antiangiogenic effects of ziyuglycoside ii a major active compound of Sanguisorba officinalis L. Phytother Res. 31: 1449–1456. DOI: 10.1002/ptr.5874
Potter D., Eriksson T., Evans R., Oh S., Smedmark J., Morgan D., Kerr M., Robertson K., Arsenault M., Dickinson T., Campbell C. 2007. Phylogeny and classification of Rosaceae. Plant Syst. Evol. 266: 5–43. DOI: 10.1007/s00606-007-0539-9
Pschenichnaja I. N., Krasnoborov I. M. 1986. A new species of the genus Sanguisorba (Rosaceae) from Seminskiy pass (Altai). Izv. Sibir. otdel. Akad. nauk. Ser. Biol. Nauk 18: 3–5. [In Russian] (Пшеничная И. Н., Красноборов И. М. Новый вид рода Sanguisorba (Rosaceae) с Семинского перевала (Алтай) // Изв. Сиб. отдел. Акад. наук. Сер. Биол. наук, 1986. № 18. С. 3 5).
Raymond M., Rousset F. 1995. GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J. Heredity 86: 248–249.
Rohlf F. 2018. NTSYSpc: Numerical Taxonomy System, ver. 2.21r. Applied Biostatistics: 16–39.
Romojaro A., Botella M., Obon C., Pretel M. 2013. Nutritional and antioxidant properties of wild edible plants and their use as potential ingredients in the modern diet. Int. J. Food Sci. Nutr. 64: 944–952. DOI: 10.3109/09637486.2013.821695
Rousset F. 2008. Genepop'007: a complete reimplementation of the Genepop software for Windows and Linux. Mol. Ecol. Resources 8: 103–106. DOI: 10.1111/j.1471-8286.2007.01931.x
Schulze-Menz G. 1964. Rosaceae. In: H. Melchior (ed.). Engler’s Syllabus der Pflanzenfamilien II. 12th ed. Berlin: Gebrüder Borntraeger. Pp. 209–218.
Slatkin M. 1987. Gene flow and the geographic structure of natural populations. Science 236: 787–792. DOI: 10.1126/science.3576198
Smouse P., Long G., Sokal R. 1986. Multiple regression and correlation extensions of the mantel test of matrix correspondence. Syst. Zool. 35: 627–632.
Son D., Hwang S., Kim M., Park U., Kim B. 2015. Anti-diabetic and hepato-renal protective effects of ziyuglycoside II methyl ester in type 2 diabetic mice. Nutrients 7: 5469–5483. DOI: 10.3390/nu7075232
Su X., Ali I., Arooj M., Koh Y., Yang S., Kim Y. 2018. Chemical constituents from Sanguisorba officinalis L. and their inhibitory effects on lps-stimulated pro-inflammatory cytokine production in bone marrow-derived dendritic cells. Arch. Pharm. Res. 41: 497–505. DOI: 10.1007/s12272-018-1035-1
Su X., Guo R., Yang S., Kim Y., Kim Y. 2019. Anti-bacterial effects of components from Sanguisorba officinalis L. on vibrio vulnificus and their soluble epoxide hydrolase inhibitory activity. Nat. Prod. Res. 33: 3445–3449. DOI: 10.1080/14786419.2018.1478825
Taggart J., Cahill J., McNickle G., Hall J. 2011. Molecular identification of roots from a grassland community using size differences in fluorescently labelled PCR amplicons of three cpDNA regions. Molecular Ecology Resources 11: 185–195.
Takhtajan A. 1997. Diversity and classification flowering plants. New York: Columbia University Press. 643 pp.
Tan Y., Shudo T., Yoshida T., Sugiyama Y., Si J., Tsukano C. 2019. Ellagic acid, extracted from Sanguisorba officinalis, induces G1 arrest by modulating PTEN activity in B16F10 melanoma cells. Genes Cells 24: 688–704. DOI: 10.1111/gtc.12719
Valentini A., Pompanon F., Taberlet P. 2009. DNA barcoding for ecologists. Trends in Ecology et Evolution 24: 110–117.
Wallinger C., Juen A., Staudacher K., Schallhart N., Mitterrutzner E., Steiner E. 2012. Rapid plant identification using species and group-specific primers targeting chloroplast DNA. PLoS ONE 7: e29473. DOI: 10.1371/journal.pone.0029473
Xiang-Xiao M., Yan-Fang X., Li X., Dong Z., Yu-Hua S., Ming-Li W., Gang-Qiang D., Siu-Po I., Zhi-Xiu L., Lan W., Wei S. 2018. Complete chloroplast genomes from Sanguisorba: Identity and variation among four species. Molecules 23: 2137. DOI: 10.3390/molecules23092137
Yasueda A., Kayama H., Murohashi M., Nishimura J., Wakame K., Komatsu K. 2020. Sanguisorba officinalis L. derived from herbal medicine prevents intestinal inflammation by inducing autophagy in macrophages. Sci. Rep. 10: 9972. DOI: 10.1038/s41598-020-65306-4
Ye J., Coulouris G., Zaretskaya I., Cutcutache I., Rozen S., Madden T. 2012. Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics 13: 134.
Zhang L., Koyyalamudi S., Jeong S., Reddy N., Smith P., Ananthan R. 2012. Antioxidant and immunomodulatory activities of polysaccharides from the roots of Sanguisorba officinalis. Int. J. Biol. Macromol. 51: 1057–1062. DOI: 10.1016/j.ijbiomac.2012.08.019
Zhao Z., He X., Zhang Q., Wei X., Huang L., Fang J. 2017. Traditional uses, chemical constituents and biological activities of plants from the genus Sanguisorba L. Am. J. Chin. Med. 45: 199–224. DOI: 10.1142/S0192415X17500136
Zhu L., Chen L., Bai C., Wu A., Liang S., Huang F. 2020. A rapid and sensitive UHPLC-MS/MS method for the determination of ziyuglycoside I and its application in a preliminary pharmacokinetic study in healthy and leukopenic rats. Biomed. Pharmacother. 123: 109. DOI: 10.1016/j.biopha.2019.109756
Опубликован
2023-11-01
Как цитировать
Колтунова А. М., Куцев М. Г., Муртазалиев Р. А. Универсальные ПЦР-праймеры для идентификации видов рода Sanguisorba и других представителей семейства Rosaceae // Turczaninowia, 2023. Т. 26, № 3. С. 126-136 DOI: 10.14258/turczaninowia.26.3.10. URL: http://turczaninowia.asu.ru/article/view/14026.
Раздел
Научные статьи

Наиболее читаемые статьи этого автора (авторов)