Characterization of the complete chloroplast genome of Pedicularis flava (Orobanchaceae)
UDC 582.952.6+575.113
Abstract
Pedicularis flava Pall. is perennial herb and is distributed in China (Inner Mongolia), Mongolia and Russia (Zabaikalye Territory – Chita city, Republic of Tyva). In Mongolia, this species is quite widely distributed across several phytogeographical regions. In this study, we assembled and annotated the complete plastid genome of P. flava using the high-through sequencing for the first time. The plastome of P. flava was identified as a double-stranded circular DNA molecule 149 087 bp long with 38.4 % GC content. The plastome consists of a large single-copy (LSC) region (83 576 bp) and a small single-copy (SSC) region (14 169 bp) and separated by two inverted repeats (IRs) of 25 671 bp each. The plastome encodes 113 unique genes which is similar to other Pedicularis species. This includes 4 rRNA, 30 tRNA, and 79 protein-coding genes, among which 4 rRNA, 7 tRNA, and 7 protein-coding genes were duplicated in the IR regions. Finally, phylogenetic analysis shows that Pedicularis species were formed a monophyletic clade and P. flava was clustered with P. resupinata.
Downloads
Metrics
References
Baasanmunkh S., Urgamal M., Oyuntsetseg B., Sukhorukov A. P., Tsegmed Z., Son D. C., et al. 2022. Flora of Mongolia: annotated checklist of native vascular plants. PhytoKeys 192: 63–169. https://doi.org/10.3897/phytokeys.192.79702
Beier S., Thiel T., Münch T., Scholz U., Mascher M. 2017. MISA-web: a web server for microsatellite prediction. Bioinformatics 33(16): 2583–2585. https://doi.org/10.1093/bioinformatics/btx198
Bolger A. M., Lohse M., Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30(15): 2114–2120. https://doi.org/10.1093/bioinformatics/btu170
Cho W. B., Choi B. H., Kim J. H., Lee D. H., Lee J. H. 2018. Complete plastome sequencing reveals an extremely diminished SSC region in hemiparasitic Pedicularis ishidoyana (Orobanchaceae). Ann. Bot. Fenn. 55: 171–183. https://doi.org/10.5735/085.055.0122
Dierckxsens N., Mardulyn P., Smits G. 2016. NOVOPlasty: de novo assembly of organelle genomes from whole genome data. Nucl. Acids Res. 45(4): gkw955. https://doi.org/10.1093/nar/gkw955
Doyle J. J., Doyle J. L. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bull. 19: 11–15.
Gao L. Z., Liu Y. L., Zhang D., Li W., Gao J., Liu Y., Li K., Shi C., Zhao Y., Zhao Y. J., Jiao J. Y. 2019. Evolution of Oryza chloroplast genomes promoted adaptation to diverse ecological habitats. Commun. Biol. 2(1): 278. https://doi.org/10.1038/s42003 019 0531 2
Jiang Y., Li H., Wu M., Zhang X., Baasanmukh S., Li H., Sun H., Chen S. 2025. Comparative chloroplast genomes of Incarvillea species (Bignoniaceae) unveiled genomic diversity and shed light on phylogenetic relationships. BMC Plant Biol. 25: 399. https://doi.org/10.1186/s12870-025-06380-6
Katoh K. 2002. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30(14): 3059–3066. https://doi.org/10.1093/nar/gkf436
Kosachev P. A. 2010. Synopsis of the families Scrophulariaceae Juss. and Pediculariaceae Juss. of Altai mountain country. Turczaninowia 13, 1: 19–102.
Kusnetsov V. V. 2018. Chloroplasts: Structure and expression of the plastid genome. Rus. J. Plant Physiol. 65: 465–476. https://doi.org/10.1134/S1021443718030044
Li X., Yang J.-B., Wang H., Song Y., Corlett R. T., Yao X., Li D.-Z., Yu W.-B. 2021. Plastid NDH pseudogenization and gene loss in a recently derived lineage from the largest hemiparasitic plant genus Pedicularis (Orobanchaceae). Plant Cell Physiol. 62(6): 971–984. https://doi.org/10.1093/pcp/pcab074
Liu M.-L., Yu W.-B., Wang H. 2013. Rapid identification of plant species and iFlora: Application of DNA barcoding in a large temperate genus Pedicularis (Orobanchaceae). Plant Divers. 35(6): 707–714. https://doi.org/10.7677/ynzwyj201313168
Liu S., Ni Y., Li J., Zhang X., Yang H., Chen H., Liu C. 2023. CPGView: A package for visualizing detailed chloroplast genome structures. Mol. Ecol. Res. 23(3): 694–704. https://doi.org/10.1111/1755-0998.13729
Nyamgerel N., Baasanmunkh S., Oyuntsetseg B., Bayarmaa G.-A., Erst A., Park I., Choi H. J. 2023. Insight into chloroplast genome structural variation of the Mongolian endemic species Adonis mongolica (Ranunculaceae) in the Adonideae tribe. Sci. Rep. 13: 1–12. https://doi.org/10.1038/s41598-023-49381-x
Oyuntsetseg D., Nyamgerel N., Baasanmunkh S., Oyuntsetseg B., Urgamal M., Yoon J. W., Bayarmaa G.-A., Choi H. J. 2024. The complete chloroplast genome and phylogenetic results support the species position of Swertia banzragczii and Swertia marginata (Gentianaceae) in Mongolia. Bot. Stud. 65: 11. https://doi.org/10.1186/s40529-024-00417-z
POWO [2024]. Plants of the World Online. Kew: Facilitated by the Royal Botanic Gardens. URL: http://www.plantsoftheworldonline.org (Accessed 16 November 2024).
Provan J., Powell W., Hollingsworth P. M. 2001. Chloroplast microsatellites: New tools for studies in plant ecology and evolution. Trends Ecol. Evol. 16(3): 142–147. https://doi.org/10.1016/S0169-5347(00)02097-8
Rambaut A. 2012. FigTree v1. 4. Molecular evolution, phylogenetics and epidemiology. Edinburgh: University of Edinburgh, Institute of Evolutionary Biology.
Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30(9): 1312–1313. https://doi.org/10.1093/bioinformatics/btu033
Tamura K., Stecher G., Kumar S. 2021. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol. 38(7): 3022–3027. https://doi.org/10.1093/molbev/msab120
Tillich M., Lehwark P., Pellizzer T., Ulbricht-Jones E. S., Fischer A., Bock R., Greiner S. 2017. GeSeq – versatile and accurate annotation of organelle genomes. Nucl. Acids Res. 45(W1): W6–W11. https://doi.org/10.1093/nar/gkx391
Tkach N., Ree R. H., Kuss P., Röser M., Hoffmann M. H. 2014. High mountain origin, phylogenetics, evolution, and niche conservatism of arctic lineages in the hemiparasitic genus Pedicularis (Orobanchaceae). Mol. Phylogenetics Evol. 76: 75–92. https://doi.org/10.1016/j.ympev.2014.03.004
Wang M., Zhang S., Zhang L. 2024. The complete chloroplast genome sequences of three Pedicularis species (Orobanchaceae). Genet. Mol. Biol. 47(3): e20240010. https://doi.org/10.1590/1678-4685-GMB-2024-0010
Wang T., Li X., Tang C., Cao Z., He H., Ma X., Li Y., De K. 2024. Complete chloroplast genomes and phylogenetic relationships of Pedicularis chinensis and Pedicularis kansuensis. Sci. Rep. 14: 14357. https://doi.org/10.1038/s41598-024-63815-0
Wu C., Fang D., Wei J., Wang X., Chen X. 2019. The complete chloroplast genome of Pedicularis alaschanica (Orobanchaceae). Mitochondrial DNA 4(2): 2197–2198. https://doi.org/10.1080/23802359.2019.1623723
Yu W.-B., Huang P.-H., Ree R. H., Liu M.-L., Li D.-Z., Wang H. 2011. DNA barcoding of Pedicularis L. (Orobanchaceae): Evaluating four universal barcode loci in a large and hemiparasitic genus. J. Syst. Evol. 49(5): 425–437. https://doi.org/10.1111/j.1759-6831.2011.00154.x
Zhang R., Wang J., Han K., Ting R., Shuyun Z., Edward B., Zhan-Lin L. 2017. Complete chloroplast genome sequence of Pedicularis cheilanthifolia, an alpine plant in China. Conserv. Genet. Resour. 9: 619–621. https://doi.org/10.1007/s12686-017-0740-2
Zhang Q., Lu Z., Guo M., Kang J., Li J., He X., Wu J., Liu R., Dang J., Li Z. 2024. Responses of three Pedicularis species to geological and climatic changes in the Qinling Mountains and adjacent areas in East Asia. Plants 13: 765. https://doi.org/10.3390/plants13060765
Turczaninowia is a golden publisher, as we allow self-archiving, but most importantly we are fully transparent about your rights.
Authors may present and discuss their findings ahead of publication: at biological or scientific conferences, on preprint servers, in public databases, and in blogs, wikis, tweets, and other informal communication channels.
Turczaninowia allows authors to deposit manuscripts (currently under review or those for intended submission to Turczaninowia) in non-commercial, pre-print servers such as ArXiv.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).