Стандарты в проточной цитометрии растений: обзор, вопросы полиморфизма и линейности

УДК 58.08+575.113+575.224.234.2

Ключевые слова: йодид пропидия, плоидность, проточная цитометрия растений, размер генома, содержание ДНК, стандартизация, эталонные стандарты, C-value

Аннотация

В статье представлен краткий обзор основных видов растений, используемых в качестве стандартов в проточной цитометрии. Проведена оценка их линейности на основе прямых измерений в течение года в условиях теплицы и открытого грунта. Значения содержания ДНК измерены в двух общепринятых в настоящее время значениях – на основе геномов человека (7,0 пг) и риса (0,795 пг). Выявлено, что среди значений содержания ДНК стандартов на основе генома человека, не линейны значения содержания ДНК у Raphanussativus и Solanum lycopersicum. В числе стандартов на основе генома риса выявлены отклонения в линейности для размеров геномов Pisum sativum, Vicia faba и Allium cepa. В работе впервые приведены наши прямые измерения содержания ДНК на основе размера генома риса для часто используемых стандартов, таких как ячмень, рожь, кукуруза и многих других. Выявлено, что нелинейность в основном связана со значением размера генома первоначального стандарта, инструментальными вариациями и полиморфизмом содержания ДНК стандартов. С помощью множественных стандартов исследованы некоторые виды многолетних растений, которые потенциально возможно использовать в качестве стандарта ввиду низкого полиморфизма содержания ДНК и удобства использования. В статье подробно исследованы особенности использования стандартов, а также акцентированно внимание на некоторых методических аспектах, обеспечивающих точность данных в проточной цитометрии растений.

Скачивания

Данные скачивания пока недоступны.

Metrics

Загрузка метрик ...

Литература

Arumuganathan K., Earle E. D. 1991. Nuclear DNA content of some important plant species. Pl. Molec. Biol. Rep. 9: 208–218. DOI: 10.1007/BF02672069
Bainard J. D., Husband B. C., Baldwin S. J., Fazekas A. J., Gregory T. R., Newmaster S. G., Kron P. 2011. The effects of rapid desiccation on estimates of plant genome size. Chromosome Res. 19(6): 825–842. DOI: 10.1007/s10577-011-9232-5
Banks P. 1984. A new diploid chromosome number for tomato (Lycopersicon esculentum)? Can. J. Genet. Cytol. 26(5): 636–639. DOI: 10.1139/g84-099
Baranyi M., Greilhuber J. 1996. Flow cytometric and Feulgen densitometric analysis of genome size variation in Pisum. Theor. Appl. Genet. 92: 297–307. DOI: 10.1007/BF00223672
Bennett M. D. 1972. Nuclear DNA content and minimum generation time in herbaceous plants. Proc. R. Soc. Lond. B Biol. Sci. 181 (1063): 109–135. DOI: 10.1098/rspb.1972.0042
Bennett M. D., Bhandol P., Leitch I. J. 2000. Nuclear DNA amounts in angiosperms and their modern uses – 807 New Estimates. Ann. Bot. 86(4): 859–909. DOI:10.1006/anbo.2000.1253
Bennett M., Johnston J., Hodnett G., Price H. 2000. Allium cepa L. cultivars from four continents compared by flow cytometry show nuclear DNA constancy. Ann. Bot. 85(3): 351–357. DOI: 10.1006/anbo.1999.1071
Bennett M. D., Leitch I. J. 1995. Nuclear DNA amounts in angiosperms. Ann. Bot. 76(2): 113–176. DOI: 10.1006/anbo.1995.1085
Bennett M. D., Leitch I. J. 1997. Nuclear DNA amounts in angiosperms – 583 new estimates. Ann. Bot. 80(2): 169–196. DOI: 10.1006/anbo.1997.0415
Bennett M. D., Leitch I. J. 2001. Nuclear DNA amounts in pteridophytes. Ann. Bot. 87(3): 335–345. DOI:10.1006/anbo.2000.1339
Bennett M. D., Leitch I. J. 2005. Nuclear DNA amounts in angiosperms: progress, problems and prospects. Ann. Bot. 95(1): 45–90. DOI: 10.1093/aob/mci003
Bennett M. D., Leitch I. J. 2011. Nuclear DNA amounts in angiosperms: targets, trends and tomorrow. Ann. Bot. 107(3): 467–590. DOI: 10.1093/aob/mcq258
Bennett M. D., Leitch I. J., Price H. J., Johnston J. S. 2003. Comparisons with Caenorhabditis (100 Mb) and Drosophila (175 Mb) using flow cytometry show genome size in Arabidopsis to be 157 Mb and thus 25 % larger than the Arabidopsis genome Initiative estimate of 125 Mb. Ann. Bot. 91(5): 547–557. DOI: 10.1093/aob/mcg057
Bennett M. D., Smith J. B. 1976. Nuclear DNA amounts in angiosperms. Philos Trans R. Soc. Lond. B Biol. Sci. 274 (933): 227–274. DOI: 10.1098/rstb.1976.0044. PMID: 6977
Bennett M. D., Smith J. B., Heslop-Harrison J. S. 1982. Nuclear DNA amounts in angiosperms. Proc. R. Soc. Lond. B Biol. Sci. 216: 179–199. DOI: 10.1098/rspb.1982.0069
Bourge M., Brown S., Siljak-Yakovlev S. 2018. Flow cytometry as tool in plant sciences, with emphasis on genome size and ploidy level assessment. Genetics and Applications. 2, 2: 1–12. DOI: 10.31383/ga.vol2iss2pp1-12
Brown S. C., Bourge M., Maunoury N., Wong M., Wolfe Bianchi M., Lepers-Andrzejewski S., Besse P., Siljak-Yakovlev S., Dron M., Satiat-Jeunemaître B. 2017. DNA Remodeling by strict partial endoreplication in Orchids, an original process in the plant kingdom. Genome Biol. Evol. 9(4): 1051–1071. DOI: 10.1093/gbe/evx063
Chen J., Wang Z., Tan K., Huang W., Shi J., Li T., Hu J., Wang K., Wang C., Xin B., Zhao H., Song W., Hufford M. B., Schnable J. C., Jin W., Lai J. 2023. A complete telomere-to-telomere assembly of the maize genome. Nat. Genet. 55: 1221–1231. DOI: 10.1038/s41588-023-01419-6
Clark J., Hidalgo O., Pellicer J., Liu H., Marquardt J., Robert Y., Christenhusz M., Zhang S., Gibby M., Leitch I. J., Schneider H. 2016. Genome evolution of ferns: evidence for relative stasis of genome size across the fern phylogeny. New Phytol. 210(3): 1072–1082. DOI: 10.1111/nph.13833
Darzynkiewicz Z., Traganos F., Kapuscinski J., Staiano-Coico L., Melamed M. R. 1984. Accessibility of DNA in situ to various fluorochromes: relationship to chromatin changes during erythroid differentiation of Friend leukemia cells. Cytometry A 5(4): 355–363. DOI: 10.1002/cyto.990050411
Doležel J., Bartos J. 2005. Plant DNA flow cytometry and estimation of nuclear genome size. Ann. Bot. 95(1): 99–110. DOI: 10.1093/aob/mci005
Doležel J., Bartoš J., Voglmayr H., Greilhuber J. 2003. Nuclear DNA content and genome size of trout and human. Cytometry A 51: 127–128. DOI: 10.1002/cyto.a.10013
Doležel J., Doleželová M., Novák F. 1994. Flow cytometric estimation of nuclear DNA amount in diploid bananas (Musa acuminata and M. balbisiana). Biol. Plant. 36: 351–357. DOI: 10.1007/BF02920930
Doležel J., Greilhuber J. 2010. Nuclear genome size: are we getting closer? Cytometry A 19: 103–106. DOI: 10.1002/cyto.a.20915
Doležel J., Greilhuber J., Lucretti S., Meister A., Lysák M., Nardi L., Obermayer R. 1998. Plant genome size estimation by flow cytometry: inter-laboratory comparison. Ann. Bot. 82: 17–26. DOI: 10.1093/oxfordjournals.aob.a010312
Doležel J., Greilhuber J., Suda J. 2007a. Estimation of nuclear DNA content in plants using flow cytometry. Nat. Prot. 2(9): 2233–2244. DOI: 10.1038/nprot.2007.310
Doležel J., Greilhuber J., Suda J. 2007b. Flow cytometry with plants: an Overview. In: J. Doležel, J. Greilhuber, J. Suda (eds.). Flow cytometry with plant cells. Weinheim: Wiley-VCH. Pp. 41–66. DOI: 10.1002/9783527610921.ch3
Doležel J., Sgorbati S., Lucretti S. 1992. Comparison of three DNA fluorochromes for flow cytometric estimation of nuclear DNA content in plants. Phys. Plant. 85: 625–631. DOI: 10.1111/j.1399-3054.1992.tb04764.x
Galbraith D. W., Harkins K. R., Maddox J. M., Ayres N. M., Sharma D. P., Firoozabady E. 1983. Rapid flow cytometric analysis of the cell cycle in intact plant tissues. Science 220(4601): 1049–1051. DOI: 10.1126/science.220.4601.1049
Greilhuber J., Doležel J., Lysák MA., Bennett MD. 2005. The origin, evolution and proposed stabilization of the terms ‘genome size’ and ‘C-value’ to describe nuclear DNA contents. Ann. Bot. 95(1): 255–260. DOI: 10.1093/aob/mci019
Greilhuber J., Ebert I. 1994. Genome size variation in Pisum sativum. Genome 37: 646–655. DOI: 10.1139/g94-092
Greilhuber J., Temsch E. M., Loureiro J. C. M. 2007. Nuclear DNA content measurement. In: J. Doležel, J. Greilhuber, J. Suda (eds.). Flow cytometry with plant cells. Weinheim: Wiley-VCH. Pp. 67–101. DOI: 10.1002/9783527610921.ch4
Heller F. O. 1973. DNS-Bestimmung an Keimwurzeln von Vicia faba L. mit Hilfe der Impulseytophotometcie. Ber. Deutsch. Bot. Gesellschaft. 86, 437–441. DOI: 10.1111/j.1438-8677.1973.tb02427.x
Hornych O., Ekrt L., Riedel F., Koutecký P., Košnar J. 2019. Asymmetric hybridization in central European populations of the Dryopteris carthusiana group. Am. J. Bot. 106: 1477–1486. DOI: 10.1002/ajb2.1369
Hou M. H., Lin S. B., Yuann J. M., Lin W. C., Wang A. H., Kan Ls. L. 2001. Effects of polyamines on the thermal stability and formation kinetics of DNA duplexes with abnormal structure. Nucleic Acids Res. 29(24): 5121–5128. DOI: 10.1093/nar/29.24.5121
Hu Y., Resende Jr. M. F. R. 2022. Maize genome assembly with PacBio reads. Bio-101: e4456. DOI: 10.21769/BioProtoc.4456
International Rice Genome Sequencing Project. 2005. The map-based sequence of the rice genome. Nature 436: 793–800. DOI: 10.1038/nature03895
Johnston J. S., Bennett M. D., Rayburn A. L., Galbraith D.W., Price H. J. 1999. Reference standards for determination of DNA content of plant nuclei. American Journal of Botany. 86(5): 609–613. DOI: 10.2307/2656569
Koutecký P., Smith T., Loureiro J., Kron P. 2023. Best practices for instrument settings and raw data analysis in plant flow cytometry. Cytometry A 103(12): 953–966. DOI: 10.1002/cyto.a.24798
Kron P., Husband B. C. 2012. Using flow cytometry to estimate pollen DNA content: improved methodology and applications. Ann. Bot. 110(5): 1067–1078. DOI: 10.1093/aob/mcs167
Kubešová M., Moravcová L., Suda J., Jarošík V., Pyšek P. 2010. Naturalized plants have smaller genomes than their non-invading relatives: a flow cytometric analysis of the Czech alien flora. Preslia 82: 81–96.
Leong-Skornicková J., Sída O., Jarolímová V., Sabu M., Fér T., Trávnícek P., Suda J. 2007. Chromosome numbers and genome size variation in Indian species of Curcuma (Zingiberaceae). Ann. Bot. 100(3): 505–526. DOI: 10.1093/aob/mcm144
Loureiro J., Čertner M., Lučanová M., Sliwinska E., Kolář F., Doležel J., Garcia S., Castro S., Galbraith D. W. 2023. The use of flow cytometry for estimating genome sizes and DNA ploidy levels in plants. Methods Mol. Biol. 2672: 25–64. DOI: 10.1007/978-1-0716-3226-0_2
Loureiro J., Rodriguez E., Doležel J., Santos C. 2006. Comparison of four nuclear isolation buffers for plant DNA flow cytometry. Ann. Bot. 98(3): 679–689. DOI: 10.1093/aob/mcl141
Loureiro J., Rodriguez E., Doležel J., Santos C. 2007. Two new nuclear isolation buffers for plant DNA flow cytometry: a test with 37 species. Ann. Bot. 100(4): 875–888. DOI: 10.1093/aob/mcm152
Lysák M. A., Doležel J. 1998. Estimation of nuclear DNA content in Sesleria (Poaceae). Caryologia 51: 123–132. DOI: 10.1080/00087114.1998.10589127
Marie D., Brown S. C. 1993. A cytometric exercise in plant DNA histograms, with 2C-values for 70 species. Biol. Cell. 78: 41–51. DOI: 10.1016/0248-4900(93)90113-S
Meister A. 2005. Calculation of binding length of base-specific DNA dyes by comparison of sequence and flow cytometric data. Application to Oryza sativa and Arabidopsis thaliana. J. Theor. Biol. 232: 93–97. DOI: 10.1016/j.jtbi.2004.07.022
Nurk S., Koren S., Rhie A., Rautiainen M., Bzikadze A. V., Mikheenko A. et al. 2022. The complete sequence of a human genome. Science 376(6588): 44–53. DOI: 10.1126/science.abj6987
Obermayer R., Leitch I. J., Hanson L., Bennett M. D. 2002. Nuclear DNA C-values in 30 species double the familial representation in pteridophytes. Ann. Bot. 90(2): 209–217. DOI: 10.1093/aob/mcf167
Otto F. 1990. DAPI staining of fixed cells for high-resolution flow cytometry of nuclear DNA. Methods Cell Biol. 33: 105–110. DOI: 10.1016/s0091-679x(08)60516-6
Pfosser M., Amon A., Lelley T., Heberle-Bors E. 1995. Evaluation of sensitivity of flow cytometry in detecting aneuploidy in wheat using disomic and ditelosomic wheat-rye addition lines. Cytometry A 21(4): 387–393. DOI: 10.1002/cyto.990210412
Praça-Fontes M. M., Carvalho C. R., Clarindo W. R., Cruz C. D. 2011. Revisiting the DNA C-values of the genome size-standards used in plant flow cytometry to choose the “best primary standards”. Plant Cell Rep. 30(7): 1183–1191. DOI: 10.1007/s00299-011-1026-x
Ricroch A., Yockteng R., Brown S. C., Nadot S. 2005. Evolution of genome size across some cultivated Allium species. Genome 48: 511-520. DOI: 10.1139/g05-017
Rosado T. B., Clarindo W. R., Carvalho C. R. 2009. An integrated cytogenetic, flow and image cytometry procedure used to measure the DNA content of Zea mays A and B chromosomes. Plant Sci. 176(1): 154–158. DOI: 10.1016/j.plantsci.2008.10.007
Rosato M., Chiavarino A., Naranjo C., Hernandez J., Poggio L. 1998. Genome size and numerical polymorphism for the B chromosome in races of maize (Zea mays ssp. mays, Poaceae). A. J. Bot. 85(2): 168–174. DOI: 10.2307/2446305
Schmuths H., Meister A., Horres R., Bachmann K. 2004. Genome size variation among accessions of Arabidopsis thaliana. Ann. Bot. 93(3): 317–321. DOI: 10.1093/aob/mch037
Shang L., He W., Wang T., Yang Y., Xu Q., Zhao X., Yang L., Zhang H., Li X., Lv Y., Chen W., Cao S., Wang X., Zhang B., Liu X., Yu X., He H., Wei H., Leng Y., Shi C., Guo M., Zhang Z., Zhang B., Yuan Q., Qian H., Cao X., Cui Y., Zhang Q., Dai X., Liu C., Guo L., Zhou Y., Zheng X., Ruan J., Cheng Z., Pan W., Qian Q. 2023. A complete assembly of the rice Nipponbare reference genome. Mol. Plant 16(8): 1232–1236. DOI: 10.1016/j.molp.2023.08.003
Shen Y., Liu J., Geng H., Zhang J., Liu Y., Zhang H., Xing S., Du J., Ma S., Tian Z. 2018. De novo assembly of a Chinese soybean genome. Sci. China Life Sci. 61(8): 871–884. DOI: 10.1007/s11427-018-9360-0
Shirasawa K., Hirakawa H., Fukino N., Kitashiba H., Isobe S. 2020. Genome sequence and analysis of a Japanese radish (Raphanus sativus) cultivar named ‘Sakurajima Daikon’ possessing giant root. DNA Res. 27, 2: dsaa010. DOI: 10.1093/dnares/dsaa010
Скапцов М. В., Смирнов С. В., Куцев М. Г., Шмаков А. И. Проблемы стандартизации в проточной цитометрии растений // Turczaninowia, 2016. Т. 19, № 3. С. 120–122. DOI: 10.14258/turczaninowia.19.3.9
Skaptsov M. V., Vaganov A. V., Kechaykin A. A., Kutsev M. G., Smirnov S. V., Dorofeev V. I., Borodina-Grabovskaya A. E., Seregin A. P., Sinitsina T. A., Friesen N., Zhang X., Shmakov A. I. 2020. The cytotypes variability of the complex Selaginella sanguinolenta s. l. Turczaninowia. 23, 2: 5–14. DOI: 10.14258/turczaninowia.23.2.1
Sliwinska E., Loureiro J., Leitch I. J., Šmarda P., Bainard J., Bureš P., Chumová Z., Horová L., Koutecký P., Lučanová M., Trávníček P., Galbraith D. W. 2022. Application-based guidelines for best practices in plant flow cytometry. Cytometry A 101(9): 749–781. DOI: 10.1002/cyto.a.24499
Šmarda P., Bureš P., Horová L., Foggi B., Rossi G. 2008. Genome size and gc content evolution of Festuca: ancestral expansion and subsequent reduction. Ann. Bot. 101(3): 421–433. DOI:10.1093/aob/mcm307
Šmarda P., Bureš P., Horová L., Leitch I. J., Mucina L., Pacini E., Tichý L., Grulich V., Rotreklová O. 2014. Ecological and evolutionary significance of genomic GC content diversity in monocots. Proc. Natl. Acad. Sci. U.S.A. 111(39): 4096–4102. DOI: 10.1073/pnas.1321152111
Šmarda P., Knápek O., Šilerová A., Horová L., Grulich V., Danihelka J., Veselý P., Šmerda J., Rotreklová O., Bureš P. 2019. Genome sizes and genomic guanine+cytosine (GC) contents of the Czech vascular flora with new estimates for 1700 species. Preslia 91(2): 117–142. DOI: 10.23855/preslia.2019.117. 2019
Smirnov S., Skaptsov M., Shmakov A., Fritsch R., Friesen N. 2017. Spontaneous hybridization among Allium tulipifolium and A. robustum (Allium subg. Melanocrommyum, Amaryllidaceae) under cultivation. Phytotaxa 303: 155. DOI: 10.11646/phytotaxa.303.2.5
Sokoloff D. D., Degtjareva G. V., Skaptsov M. V., Vislobokov N. A., Kirejtshuk A. G., Sennikov A. N. et al. 2024. Diploids and tetraploids of Acorus (Acoraceae) in temperate Asia are pseudocryptic species with clear differences in micromorphology, DNA sequences and distribution patterns, but shared pollination biology. Taxon 73: 718–761. DOI: 10.1002/tax.13173
Su X., Wang B., Geng X., Du Y., Yang Q., Liang B., Meng G., Gao Q., Yang W., Zhu Y., Lin T. 2021. A high-continuity and annotated tomato reference genome. BMC Genomics 22, 1: 898. DOI: 10.1186/s12864-021-08212-x
Suda J., Krahulcová A., Trávnícek P., Rosenbaumová R., Peckert T., Krahulec F. 2007. Genome size variation and species relationships in Hieracium sub-genus Pilosella (Asteraceae) as inferred by flow cytometry. Ann. Bot. 100(6): 1323–1335. DOI: 10.1093/aob/mcm218
Suda J., Leitch I. J. 2010. The quest for suitable reference standards in genome size research. Cytometry A 77(8): 717–720. DOI: 10.1002/cyto.a.20907. PMID: 20653010
Suda J., Trávnícek P. 2006. Reliable DNA ploidy determination in dehydrated tissues of vascular plants by DAPI flow cytometry – new prospects for plant research. Cytometry A 69(4): 273–280. DOI: 10.1002/cyto.a.20253. PMID: 16528735.
Suda J. 2009. An employment of flow cytometry into plant biosystematics. PhD thesis. Charles University in Prague. 50 pp.
Temsch E. M., Greilhuber J., Krisai R. 2010. Genome size in liverworts. Preslia 82: 63–80.
Temsch E. M., Koutecký P., Urfus T., Šmarda P., Doležel J. 2022. Reference standards for flow cytometric estimation of absolute nuclear DNA content in plants. Cytometry A 101(9): 710–724. DOI: 10.1002/cyto.a.24495
The Arabidopsis Genome Initiative. 2000. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408: 796–815. DOI: 10.1038/35048692
Tiersch T. R., Chandler R. W., Wachtel S. S., Elias S. 1989. Reference standards for flow cytometry and application in comparative studies of nuclear DNA content. Cytometry A 10(6): 706–10. DOI: 10.1002/cyto.990100606
Tomato Genome Consortium. 2012. The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485, 7400: 635–641. DOI: 10.1038/nature11119
Trávníček P., Ponert J., Urfus T., Jersáková J., Vrána J., Hřibová E., Doležel J., Suda J. 2015. Challenges of flow-cytometric estimation of nuclear genome size in orchids, a plant group with both whole-genome and progressively partial endoreplication. Cytometry A 87(10): 958 – 966. DOI: 10.1002/cyto.a.22681
Van’t Hof J. 1965. Relationships between mitotic cycle duration S period duration and average rate of DNA synthesis in root meristem cells of several plants. Exp. Cell Res. 39: 48–58. DOI: 10.1016/0014-4827(65)90006-6
Veleba A., Šmarda P., Zedek F., Horová L., Šmerda J., Bureš P. 2017. Evolution of genome size and genomic GC content in carnivorous holokinetics (Droseraceae). Ann. Bot. 119(3): 409–416. DOI: 10.1093/aob/mcw229
Veselý P., Bures P., Smarda P., Pavlícek T. 2012. Genome size and DNA base composition of geophytes: the mirror of phenology and ecology? Ann. Bot. 109(1): 65–75. DOI: 10.1093/aob/mcr267
Vilhar B., Greilhuber J., Dolenc-Koce J., Temsch E. M., Dermastia M. 2001. Plant genome size measurement with DNA image cytometry. Ann. Bot. 87(6): 719–728.
Wang G., Yang Y. 2016. The effects of fresh and rapid desiccated tissue on estimates of Ophiopogoneae genome size. Plant Divers. 38(4): 190–193. DOI: 10.1016/j.pld.2016.08.001
Xu L., Wang Y., Dong J., Zhang W., Tang M., Zhang W., Wang K., Chen Y., Zhang X., He Q., Zhang X., Wang K., Wang L., Ma Y., Xia K., Liu L. 2023. A chromosome-level genome assembly of radish (Raphanus sativus L.) reveals insights into genome adaptation and differential bolting regulation. Plant Biotechnol. J. 21(5): 990–1004. DOI: 10.1111/pbi.14011
Yi X., Liu J., Chen S., Wu H., Liu M., Xu Q., Lei L., Lee S., Zhang B., Kudrna D., Fan W., Wing RA., Wang X., Zhang M., Zhang J., Yang C., Chen N. 2022. Genome assembly of the JD17 soybean provides a new reference genome for comparative genomics. G3 (Bethesda). 12, 4: jkac017. DOI: 10.1093/g3journal/jkac017
Yokoya K., Roberts A. V., Mottley J., Lewis R., Brandham P. E. 2000. Nuclear DNA amounts in roses. Ann. Bot. 85(4): 557–561. DOI: 10.1006/anbo.1999.1102
Zonneveld B. J. M. 2021. Selected perennial plants do provide convenient standards for the determination of genome sizes with flow cytometry. Plant Syst. Evol. 307: 28. DOI: 10.1007/s00606-021-01747-2
Zonneveld B. J. M., Van Iren F. 2000. Flow cytometric analysis of DNA content in Hosta reveals ploidy chimeras. Euphytica 111: 105–110. DOI: 10.1023/A:1003879408413
Опубликован
2024-08-01
Как цитировать
Скапцов М. В., Куцев М. Г., Смирнов С. В., Ваганов А. В., Уварова О. В., Шмаков А. И. Стандарты в проточной цитометрии растений: обзор, вопросы полиморфизма и линейности // Turczaninowia, 2024. Т. 27, № 2. С. 86-104 DOI: 10.14258/turczaninowia.27.2.10. URL: http://turczaninowia.asu.ru/article/view/15742.
Раздел
Научные статьи

Наиболее читаемые статьи этого автора (авторов)

<< < 1 2 3 4 5