Ploidy level of the representatives of Chenopodiaceae based on genome size and chromosome numbers

  • Maria N. Lomonosova Federal State Institution of Science Central Siberian Botanical Garden of Siberian Branch of RAS Email: mlomonosova@mail.ru
  • Tatyana V. An’kova Federal State Institution of Science Central Siberian Botanical Garden of Siberian Branch of RAS Email: mlomonosova@mail.ru
  • Maria S. Voronkova Federal State Institution of Science Central Siberian Botanical Garden of Siberian Branch of RAS Email: mlomonosova@mail.ru
  • Elena A. Korolyuk Federal State Institution of Science Central Siberian Botanical Garden of Siberian Branch of RAS Email: mlomonosova@mail.ru
  • Evgeny V. Banaev Federal State Institution of Science Central Siberian Botanical Garden of Siberian Branch of RAS Email: mlomonosova@mail.ru
  • Michail V. Skaptsov Altai State University Email: mr.skaptsov@mail.ru
Keywords: cytotype, DNA content in nuclei, flow cytometry, karyology, polyploidy

Abstract

The article presents the results of measuring the genome size (DNA content in nuclei) by flow cytometry and determining the ploidy level for 30 species of the Chenopodiaceae family in 50 natural populations from Russia, Armenia, Belarus, Kazakhstan, Tajikistan and South Korea. Genome size of 12 species was determined for the first time; they are: Atriplex patens, A. pedunculata, A. sibirica, A. verrucifera, Axyris amaranthoides, Camphorosma songorica, Ceratocarpus arenarius, Chenopodium vachellii, Corispermum declinatum, Oxybasis gubanovii, Salsola collina, Spirobassia hirsuta. Along with flow cytometric analysis, ploidy level of 13 species (Atriplex patens, A. prostrata, Bassia prostrata, Chenopodium album, C. betaceum, C. frutescens, C. karoi, C. luteorubrum, C. novopokrovskianum, C. strictum s. l., C. vachellii, Krascheninnikovia ceratoides, and Oxybasis gubanovii) from 23 populations was determined by direct chromosome counting. Genome size of 11 species was studied in two or more populations. It was shown that differences in the genome size of samples in populations from different part of the area did not exceed 5 % in diploids (Atriplex sagittata, A. sibirica) and tetraploids (Atriplex patens, Chenopodium album, C. betaceum, C. novopokrovskianum, C. strictum and Krascheninnikovia ceratoides). Two cytotypes were identified in Bassia prostrata: diploid in the Republic of Altai and tetraploid in Novosibirsk Region. A tetraploid cytotype of Chenopodium sosnovskyi was revealed in Armenia. It was shown that the genome size can be a reliable criterion to determine the ploidy level in related taxa of the Chenopodiaceae.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Andrés-Sánchez S., Temsch E. M., Rico E., Martínez-Ortega M. M. 2013. Genome size in Filago L. (Asteraceae, Gnaphalieae) and related genera: phylogenetic, evolutionary and ecological implications. Plant Systematics and Evolution 299(2): 331–345 DOI: 10.1007/s00606-012-0724-3
Aouissat M., Belkhoja M., Hcini D., Correal E. 2009. Estimation of nuclear DNA content in Algerian populations of Atriplex halimus and Atriplex canescens by flow cytometry. Annales de Biologia 31: 15–18.
Ayres D., Ryan F. J., Grotkopp E., Bailey J., Gaskin J. 2009. Tumbleweed (Salsola, section Kali) species and speciation in California. Biological Invasions 11(5): 1175–1187. DOI: 10.1007/s10530-008-9380-5
Barker M. S., Arrigo N., Anthony E., Baniaga A. E., Li Z., Levin D. A. 2016. On the relative abundance of autopolyploids and allopolyploids. New Phytologist 210(2): 391–398. DOI: 10.1111/nph.13698
Barow M., Meister A. 2003. Endopolyploidy in seeds plants is differently correlated to systematics, organ, life and genome size. Plant cell and environment 26: 571–584.
Bennett M. D. 1987. Variation in genomic form in plants and its ecological implication. New Phytologist 106: 177–200. DOI: 10.1111/j.1469-8137.1987.tb04689.x
Doležel J., Bartoš J. 2005. Plant DNA flow cytometry and estimation of nuclear genome size. Annals of Botany 95(1): 99–110. DOI: 10.1093/aob/mci005
Doležel J., Doleželová M., Novák F. J. 1994. Flow cytometric estimation of nuclear DNA amount in diploid bananas (Musa acuminata and M. balbisiana). Biologia Plantarum 36(3): 351–357. DOI:10.1007/BF02920930
Doležel J., Greilhuber J., Lucretti S., Meister A., Lysák M. A., Nardi L., Obermayer R. 1998. Plant genome size estimation by flow cytometry: Inter-laboratory comparison. Annals of Botany 82 Supp A: 17–26. DOI: 10.1006/anbo.1998.0730
Doležel J., Greilhuber J., Suda J. 2007. Estimation of nuclear DNA content in plants using flow cytometry. Nature Protocols 2(9): 2233–2244. DOI: 10.1038/nprot.2007.310
Doležel J., Sgorbati S., Lucretti S. 1992. Comparison of three DNA fluorochromes for flow cytometric estimation of nuclear DNA content in plants. Physiologia Plantarum 85(4): 625–631. DOI: 10.1111/j.1399-3054.1992.tb04764.x.
Fleischmann A., Michael T. P., Rivadavia F., Sousa A., Wang W., Temsch E. M., Greilhuber J., Müller K. F., Heubl G. 2014. Evolution of genome size and chromosome number in the carnivorous plant genus Genlisea (Lentibulariaceae) with a new estimate of the minimum genome size in angiosperms. Annals of Botany 114(8): 1651–1663. DOI: 10.1093/aob/mcu189
Fuentes-Bazan S., Uotila P., Borsch T. 2012. A novel phylogeny-based generic classification of Chenopodium sensu lato, and a tribal rearrangement of Chenopodioideae (Chenopodiaceae). Willdenowia 42(1): 5‒24. DOI: 10.3372/wi.42.42101
Гагнидзе Р. И., Гвиниашвили Ц. Н., Джинджолиа Л. Д. Числа хромосом некоторых видов флоры Грузии // Бот. журн., 2006. Т. 91, № 12. С. 1928–1929.
García-Fernández A., Iriondo J. M., Vallés J., Orellana J., Escudero A. 2012. Ploidy level and genome size of locally adapted populations of Silene ciliata across an altitudinal gradient. Plant Systematics and Evolution 298(1): 139–146. DOI: 10.1007/s00606-011-0530-3.
Greilhuber J. 1998. Intraspecific variation in genome size in angiosperms: a critical reassessment. Annals of Botany 82: 27‒35.
Hegarty M. J., Hiscock S. J. 2009. The complex nature of allopolyploid plant genomes. Heredity 103(2): 100–101. DOI: 10.1038/hdy.2009.61
Husband B. C., Baldwin S. J., Suda J. 2013. The incidence of polyploidy in natural plant populations: major patterns and evolutionary processes. In: Plant Genome Diversity. Vol. 2. Eds. I. J. Leitch, J. Greilhuber, J. Doležel, J. F. Wendel. New York: Springer. Pp. 255‒276. DOI: 10.1007/978-3-7091-1160-4_16
Jakob S. S., Meister A., Blattnert F. R. 2004. Considerable genome size variation of Hordeum species (Poaceae) is linked to phylogeny, life form, ecology, and speciation rates. Molecular Biology and Evolution 21(5): 860‒869. DOI: 10.1093/molbev/msh092
Jiao Y., Wickett N. J., Ayyampalayam S., Chanderbali A. S., Landherr L., Ralph P. E., Tomsho L. P., Hu Y., Liang H., Soltis P. S., Soltis D. E., Clifton S. W., Schlarbaum S. E., Schuster S. C., Ma H., Leebens-Mack J., de Pamphilis C. W. 2011. Ancestral polyploidy in seed plants and angiosperms. Nature 473(7345): 97–100. DOI: 10.1038/nature09916
Kadereit G., Freitag H. 2011. Molecular phylogeny of Camphorosmeae (Camphorosmoideae, Chenopodiaceae): Implications for biogeography, evolution of C4-photosynthesis and taxonomy. Taxon 60(1): 51‒78. DOI: 10.1002/tax.601006
Koce J. D., Škondrić S., Bačič T., Dermastia M. 2008. Amounts of nuclear DNA in marine halophytes. Aquatic Botany 89(4): 385–389. DOI: 10.1016/j.aquabot.2008.04.009
Kolano B., McCann J., Oskędra M., Chrapek M., Rojek M., Nobis A., Weiss-Schneeweiss H. 2019. Parental origin and genome evolution of several Eurasian hexaploid species of Chenopodium (Chenopodiaceae). Phytotaxa 392(3): 163–185. DOI: 10.11646/phytotaxa.392.3.1
Kolano B., Siwinska D., McCann J., Weiss-Schneeweiss H. 2015. The evolution of genome size and rDNA in diploid species of Chenopodium s. l. (Amaranthaceae). Botanical Journal of the Linnean Society 179: 218–235. DOI: 10.1111/boj.12321
Kron P., Suda J., Husband B. C. 2007. Applications of flow cytometry to evolutionary and population biology. Annual Review of Ecology, Evolution, and Systematics 38: 847–876. DOI: 10.1146/annurev.ecolsys.38.091206.095504
Kühn U., Bittrich V., Carolin R., Freitag H., Hedge I. C., Uotila P., Wilson P. G. 1993. Chenopodiaceae. In: The families and genera of vascular plants. Vol. 2. Eds. K. Kubitzki, J. G. Rohwer, V. Bittrich. Berlin, Heidelberg: Springer. Pp. 253‒281. DOI: 10.1007/978-3-662-02899-5_26
Loureiro J., Trávníček P., Rauchová J., Urfus T., Vít P., Štech M., Castro S., Suda J. 2010. The use of flow cytometry in the biosystematics, ecology and population biology of homoploid plants. Preslia 82(1): 3–21.
Mandák B., Krak K., Vít P., Lomonosova M. N., Belyaev A., Habibi F., Wang L., Douda J., Štorchová H. 2018. Hybridization and polyploidization within Chenopodium album aggregate analyzed by means of cytological and molecular markers. Molecular Phylogenetics and Evolution 129: 189–201. DOI: 10.1016/j.ympev.2018.08.016
Mandák B., Krak K., Vít P., Pavlíková Z., Lomonosova M. N., Habibi F., Lei W., Jellen E. N., Douda J. 2016. How genome size variation is linked with evolution within Chenopodium sensu lato. Perspectives in Plant Ecology, Evolution and Systematics 23: 18–32. DOI: 10.1016/j.ppees.2016.09.004
Mosyakin S. L. 2017. Notes on taxonomy and nomenclature of Chenopodium acerifolium and C. betaceum (C. strictum auct.) (Chenopodiaceae). Phytotaxa 324(2): 139–154. DOI: 10.11646/phytotaxa.324.2.3
Murray B. G. 2005. When does intraspecific C-value variation become taxonomically significant? Annals of Botany 95(1): 119‒125. DOI: 10.1093/aob/mci007
Olšavská K., Perný M., Španiel S., Šingliarová B. 2012. Nuclear DNA content variation among perennial taxa of the genus Cyanus (Asteraceae) in Central Europe and adjacent areas. Plant Systematics and Evolution 298(8): 1463–1482. DOI: 10.1007/s00606-12-0650-4
Otto S. P. 2007. The evolutionary consequences of polyploidy. Cell 131:452–462. DOI: 10.1016/j.cell.2007.10.022
Pellicer J., Fay M. F., Leitch I. J. 2010. The largest eukaryotic genome of them all? Botanical Journal of the Linnean Society 164(1): 10–15. DOI: 10.1111/j.1095-8339.2010.01072.x.
Pfosser M., Amon A., Lelley T., Heberle-Bors E. 1995. Evaluation of sensitivity of flow cytometry in detecting aneuploidy in wheat using disomic and ditelosomic wheat-rye addition lines. Cytometry 21(4): 387–393. DOI: 10.1002/cyto.990210412.
Rice A., Glick L., Abadi S., Einhorn M., Kopelman N. M., Salman-Minkov A., Mayzel J., Chay O., Mayrose I. 2015. The Chromosome Counts Database (CCDB) – a community resource of plant chromosome numbers. New Phytologist 206(1): 19–26. URL: http://ccdb.tau.ac.il (Accessed 30 September 2019).
Scarpino S. V., Levin D. A., Meyers L. A. 2014. Polyploid formation shapes flowering plant diversity. The American Naturalist 184(4): 456–465. URL: http://www.jstor.org/stable/10.1086/677752.
Seidl A., Pérez-Collazos E., Tremetsberger K., Carine M., Catalán P., Bernharg K-G. 2019. Phylogeny and biogeography of the Pleistocene Holarctic steppe and semi-desert goosefoot plant Krascheninnikovia ceratoides. Flora (accepted paper DOI: 10.1016/j.flora.2019.151504).
Шнеер В. С., Пунина Е. О., Родионов А. В. Внутривидовые различия в плоидности и их таксономическая интерпретация // Бот. журн., 2018. Т. 103, № 5. С. 555–585.
Скапцов М. В., Смирнов С. В., Куцев М. Г., Шмаков А. И. Проблемы стандартизации в проточной цитометрии растений // Turczaninowia, 2016, Т. 19, вып. 3. С. 120–122. DOI: 10.14258/turczaninowia.19.3.9
Slovák M., Vít P., Urfus T., Suda J. 2009. Complex pattern of genome size variation in a polymorphic member of the Asteraceae. Journal of Biogeography 36(2): 372–384 DOI: 10.1111/j.1365-2699.2008.02005.x.
Šmarda P., Bureš P. 2010. Understanding in intraspecific variation in genome siza. Preslia 82(1): 41–61.
Šmarda P., Knápek O., Březinová A. Horová L., Grulich V., Danihelka J., Veselý P., Šmerda J., Rotreklová O., Bureš P. 2019. Genome sizes and genomic guanine+cytosine (GC) contents of the Czech vascular flora with new estimates for 1700 species. Preslia 91(2): 117–142. DOI: 10.23855/preslia.2019.117.
Смирнов Ю. А. Ускоренный метод исследования соматических хромосом плодовых // Цитология, 1968. Т. 10, № 12. С. 1132–1134.
Soltis D. E, Albert V. A, Leebens-Mack J., Bell C. D., Paterson A. H., Zheng C., Sankoff D., dePamphilis C. W., Wall P. K., Soltis P. S. 2009. Polyploidy and angiosperm diversification. American Journal of Botany 96(1): 336–348. DOI: 10.3732/ajb.0800079
Stace C. A. 2000. Cytology and cytogenetics as a fundamental taxonomic resource for the 20th and 21st centuries. Taxon 49(3): 451–477. DOI: 10.2307/1224344.
Suda J., Krahulcová A., Trávnícek P., Krahulec F. 2006. Ploidy level versus DNA ploidy level: an appeal for consistent terminology. Taxon 55(2): 447–450. DOI: 10.2307/25065591.
Suda J., Kron P., Brian C. Husband B. C., Trávnièek P. 2007. Flow cytometry and ploidy: applications in plant systematics, ecology and evolutionary biology. In: Flow cytometry with plant cells: analysis of genes, chromosomes and genomes. Eds. J. Doležel, J. Greilhuber, J. Suda. Weinheim: Willey-vch. Pp. 103–130.
Thiers B. 2008+ [continuously updated]. Index Herbariorum: A global directory of public herbaria and associated staff. New York Botanical Garden's Virtual Herbarium. URL: http://sweetgum.nybg.org/science/ih (Accessed 01 October 2019).
Vít P., Krak K., Trávníček P., Douda J., Lomonosova M. N. & Mandák B. 2016. Genome size stability across Eurasian Chenopodium species (Amaranthaceae). Botanical Journal of the Linnean Society. 182(3): 637–649. DOI: 10.1111/boj.12474
Walker D. J., Moñino I., González E., Frayssinet N., Correal E. 2005. Determination of ploidy and nuclear DNA content in populations of Atriplex halimus (Chenopodiaceae). Botanical Journal of the Linnean Society 147(4): 441–448. DOI: 10.1111/j.1095-8339.2004.00379.x
Wood T. E. Takebayashi N., Barker M. S., Mayrose I., Greenspoon P. B., Rieseberg L. H. 2009. The frequency of polyploid speciation in vascular plants. Proceedings of the National Academy of Sciences 106(33): 13875–13879. DOI: 10.1073/pnas.0811575106
Published
2020-03-23
How to Cite
Lomonosova M. N., An’kova T. V., Voronkova M. S., Korolyuk E. A., Banaev E. V., Skaptsov M. V. Ploidy level of the representatives of Chenopodiaceae based on genome size and chromosome numbers // Turczaninowia, 2020. Vol. 23, № 1. P. 24-31 DOI: 10.14258/turczaninowia.23.1.3. URL: https://turczaninowia.asu.ru/article/view/7493.
Section
Science articles

Most read articles by the same author(s)

1 2 > >>