The diversity of bread wheat landraces from Asia and synthetic hexaploid wheat by alleles of loci linked to the SKr gene – a suppressor of crossability of bread wheat with rye

UDC 582.542.1:[575.174.015.3+575.222.73]+633.111

Keywords: accessions of VIR collection, DNA-markers, haplotypes, sources of crossability, Triticum aestivum, × Aegilotriticum

Abstract

Hybridization of bread wheat (BW) with rye is one of the ways to enrich its gene pool. The main control of crossability of BW with rye is carried out by the suppressor SKr. Previously, we demonstrated diagnostic efficiency of marker loci cfb341, TGlc2, gene12 and gene13, closely linked to SKr, for searching BW accessions in the VIR collection with high/low crossability, and identified new alleles of these loci in accessions from Eastern Siberia and Pakistan. In order to expand the search for rye-compatible accessions, a set of 108 BW landraces from Asia was studied. The accessions from Mongolia, Pakistan, India were the most polymorphic on marker loci, while the least polymorphic were from Turkey and Iran. In total, eight haplotypes were identified based on allelic composition of the loci, one of which was new. Accessions with haplotypes containing rare/new alleles were distributed into groups, which on their origin corresponded to the main routes of BW spread from Western to Eastern Asia. Rye-compatible forms were not only in China and Japan, but also in Pakistan, Mongolia, Afghanistan.

As a new source of diversity for BW, 30 synthetic hexaploid wheat (SHW) accessions were studied, in which the SKr gene was also involved in controlling crossability with rye. Many SHW had high crossability but were less polymorphic on marker loci than BW. However, the used DNA-markers were not as effective in identifying SHW with high/low crossability, that may point to the involvement also of other genes in controlling this trait.

Identified rye-compatible accessions BW and SHW with а allele-trait association can be used as new sources in fundamental research and in breeding.

Downloads

Download data is not yet available.

References

Alfares W., Bouguennec A., Balfourier F., Gay G., Bergès H., Vautrin S., Sourdille P., Bernard M., Feuillet C. 2009. Fine mapping and marker development for the crossability gene SKr on chromosome 5BS of hexaploid wheat (Triticum aestivum L.). Genetics 183(2): 469–481. https://doi.org/10.1534/genetics.109.107706
Bertin I., Fish L., Foote T. N., Knight E., Snape J., Moore G. 2009. Development of consistently crossable wheat genotypes for alien wheat gene transfer through fine-mapping of the Kr1 locus. Theor. Appl. Genet. 119(8): 1371–1381. https://doi.org/10.1007/s00122-009-1141-z
Betts A., Jia P. W. Dodson J. 2014. The origins of wheat in China and potential pathways for its introduction: a review. Quat. Int. 348: 158–168. https://doi.org/10.1016/j.quaint.2013.07.044
Bhatta M., Morgounov A., Belamkar V., Poland J., Baenziger P. S. 2018. Unlocking the novel genetic diversity and population structure of synthetic hexaploid wheat. BMC genomics 19: 591.https://doi.org/10.1186/s12864-018-4969-2
Bouguennec A., Lesage V. S., Gateau I., Sourdille P., Jahier J., Lonnet P. 2009. Transfer of recessive SKr crossability trait into well-adapted French wheat cultivar Barok through marker-assisted backcrossing method. Cereal Res. Commun. 46(4): 604–615. https://doi.org/10.1556/0806.46.2018.043
Дорохов Д. Б., Клоке Э. Быстрая и экономичная технология RAPD анализа растительных геномов // Генетика, 1997. Т. 33, № 4. С. 443–450.
Хакимова А. Г., Пюккенен В. П., Дульнева Н. Д., Шестобитов В. В., Губарева Н. К., Мартыненко Н. М., Митрофанова О. П. Синтетическая гексаплоидная пшеница: характеристика 36 образцов из СИММИТ, привлеченных в коллекцию ВИР (паспортные данные, морфологическое описание, хозяйственно ценные признаки, регистрация по спектрам глиадина) // Каталог мировой коллекции ВИР. № 870. СПб.: ВИР, 2018. 35 с.
Lein A. 1943. Die genetische grundlage der kreuzbarkeit zwischen weizen und roggen. Zeitschrift für induktive Abstammungs-und Vererbungslehre 81(1): 28–61. https://doi.org/10.1007/BF01847441
Мережко А. Ф., Ерохин Л. М., Юдин А. Е. Эффективный метод опыления зерновых культур: методические указания. Л.: ВИР, 1973. 11 с.
Moskal K., Kowalik S., Podyma W., Łapiński B., Boczkowska M. 2021. The Pros and Cons of Rye Chromatin Introgression into Wheat Genome. Agronomy 11(3): 456. https://doi.org/10.3390/agronomy11030456
Писарев В. Е. Амфидиплоиды «яровая пшеница × яровая рожь» // Труды по прикладной ботанике, генетике и селекции, 1960. Т. 32, № 2. С. 37–55.
Поротников И. В., Антонова О. Ю., Митрофанова О. П. Молекулярные маркеры в генетическом анализе скрещиваемости мягкой пшеницы с рожью // Вавиловский журнал генетики и селекции, 2020. Т. 24, № 6. С. 557–567. https://doi.org/10.18699/VJ20.649
Поротников И. В., Пюккенен В. П., Антонова О. Ю., Митрофанова О. П. Эффективность молекулярных маркеров гена-супрессора SKr, определяющего скрещиваемость мягкой пшеницы с рожью посевной // Экологическая генетика, 2022. Т. 20, № 3. С. 203–214. https://doi.org/10.17816/ecogen11086
Ригин Б. В. Скрещиваемость пшеницы с рожью // Труды по прикладной ботанике, генетике и селекции, 1976. Т. 58, № 1. С. 12–34.
Riley R., Chapman V. 1967. The inheritance in wheat of crossability with rye. Genet. Res. 9(3): 259–267. https://doi.org/10.1017/S0016672300010569
Stevens C. J., Murphy C., Roberts R., Lucas L., Silva F., Fuller D. Q. 2016. Between China and South Asia: A Middle Asian corridor of crop dispersal and agricultural innovation in the Bronze Age. The Holocene 26(10): 1541–1555. https://doi.org/10.1177/0959683616650268
Суриков И. М., Киссель Н. И. Наследование хорошей скрещиваемости озимой пшеницы с рожью // Цитология и генетика, 1980. Т. 14, № 4. С. 71–73.
Tixier M. H., Sourdille P., Charmet G., Gay G., Jaby C., Cadalen T., Bernard S., Nicolas P., Bernard M. 1998. Detection of QTLs for crossability in wheat using a doubled-haploid population. Theor. Appl. Genet. 97(7): 1076–1082. https://doi.org/10.1007/s001220050994
Вавилов Н. И. Центры происхождения культурных растений // Труды по прикладной ботанике, генетике и селекции, 1926. Т. 16, № 2. С. 5–138.
Yang W., Li J., Hu X. 2007. Crossability of 102 CIMMYT synthetic hexaploid wheats with rye. Southwest China Journal of Agricultural Sciences 20(2): 218–224.
Зайцев Г. Н. Математическая статистика в экспериментальной ботанике. Под ред. В. Н. Былова. М.: Наука, 1984. 424 с.
Zeven A. C., Van Heemert C. 1970. Germination of pollen of weed rye (Secale cereale L.) on wheat (Triticum aestivum L.) stigmas and the growth of the pollen tubes. Euphytica 19(2): 175–179. https://doi.org/10.1007/BF01902941
Zhang L., Wang J., Zhou R., Jia J. 2011. Discovery of quantitative trait loci for crossability from a synthetic wheat genotype. J. Genet. Genomics. 38(8): 373–378. https://doi.org/10.1016/j.jgg.2011.07.002
Zhao X., Guo Y., Kang L., Yin C., Bi A., Xu D., et al. 2023. Population genomics unravels the Holocene history of bread wheat and its relatives. Nat. Plants. 9(3): 403–419. https://doi.org/10.1038/s41477-023-01367-3
Zhou Y., Zhao X., Li Y., Xu J., Bi A., Kang L., et al. 2020. Triticum population sequencing provides insights into wheat adaptation. Nat. Genet. 52(12): 1412–1422. https://doi.org/10.1038/s41588-020-00722-w
Published
2025-10-11
How to Cite
Porotnikov I. P., Khakimova A. G., Antonova O. Y., Mitrofanova O. P. The diversity of bread wheat landraces from Asia and synthetic hexaploid wheat by alleles of loci linked to the SKr gene – a suppressor of crossability of bread wheat with rye // Turczaninowia, 2025. Vol. 28, № 3. P. 30–42 DOI: 10.14258/turczaninowia.28.3.3. URL: https://turczaninowia.asu.ru/article/view/17996.
Section
Science articles