Optimization of culture conditions for callus proliferation of Curculigo orchioides Gaertn.
Abstract
Curculigo orchioides Gaertn is a herbaceous plant that has long been used as a tonic in Vietnam with noticeable health benefits. However, the demand for rhizomes of this species could not be met due to their decreasing number in natural habitats. Despite its vulnerability, there are still not enough researches on producing calli of C. orchioides, which is a method having the capacity of creating a large source of cell biomass for bioactive compounds’ extractions. Thus, this study was conducted to figure out the best conditions for C. orchioides’s callus proliferation. Different light regimes, mineral media, and concentrations of some factors like kinetin (KIN), α-naphthaleneacetic acid (NAA), yeast extract (YE), activated charcoal (AC), and silver nitrate (AgNO3) were examined. It is shown by the results that half-strength MS medium (½ MS) given 0.5 mg/L KIN and MS medium supplemented with 0.5 mg/L KIN and put in the dark (0 light hour : 24 dark hours) are the optimal conditions for callus proliferation, with the highest fresh weights (FWs), dry weights (DWs), and growth indices (GIs) of 3.89 g / 0.45 g / 7.78, and 4.10 g / 0.47 g / 8.20, respectively. Additionally, the inhibitory effects of AgNO3, YE, and AC were demonstrated since there was no observed heavy callus in the media containing those factors.
Downloads
Metrics
References
Ahn C. H., Yoon W. M., Ahn I. O. 1996. Effects of auxin and sucrose on cell growth and production of phenolic compounds in cell suspension culture of Panax ginseng C. A. Meyer. Journal of the Korean Society for Horticultural Science 37: 340–344.
Arivalagan U., Alderson P. G., Nagarajan A. 2012. Effect of growth hormones on callus induction of Sauropus androgynous (Sweet shoot). Annals of Biological Research 3(10): 4668–4674.
Biswas M., Das S. S., Dey S. 2013. Establishment of a Stable Amaranthus tricolor Callus Line for Production of Food Colorant. Food Science and Biotechnology 22(S): 1–8. DOI: 10.1007/s10068-013-0041-9
Bleecker A. B., Estelle M. A., Somerville C., Kende H. 1998. Insensitivity to ethylene conferred by a dominant mutation in Arabidopsis thaliana. Science 241(4869): DOI: 10.1126/science.241.4869.1086
Bourgaud F., Gravot A., Milesi S., Gontier E. 2001. Production of plant secondary metabolites: a historical perspective. Plant Science 161: 839–851. DOI: 10.1016/S0168-9452(01)00490-3
Cao D. P., Zheng Y. N., Qin L. P., Han T., Zhang H., Rahman K., Zhang Q. Y. 2008. Curculigo orchioides, a traditional Chinese medicinal plant, prevents bone loss in ovariectomized rats. Maturitas 59(4): 373–380. DOI: 10.1016/j.maturitas.2008.03.010
Chauhan N. S., Dixit V. K. 2007. Antihyperglycemic activity of the ethanolic extract of Curculigo orchioides Gaertn. Pharmacognosy Magazine 3(12): 236–239.
Dhenuka S., Balakrishna P., Anand A. 1999. Indirect Organogenesis from the Leaf Explants of Medicinally Important Plant Curculigo orchioides Gaertn J. Plant Biochemistry & Biotechnology 8: 113–115. DOI: 10.1007/bf03263070
Duncan D. B. 1955. Multiple range and multiple F tests. Biometrics 11: 1–42. DOI: 10.2307/3001478
Farzinebrahimi R., Taha R. M., Rashid K., Yaacob J. S. 2014. The effect of various media and hormones via suspension culture on secondary metabolic activities of (Cape Jasmine) Gardenia jasminoides Ellis. The Scientific World Journal 2014: 1–7. DOI: 10.1155/2014/407284
Fett Neto A. G., Zhang W. Y., DiCosmo F. 1994. Kinetics of taxol production, growth and nutrient uptake in cell suspensions of Taxus cuspidata. Biotechnology and Bioengineering 44: 205–210. DOI: 10.1002/bit.260440209
George E. F., Hall M. A., Klerk G-J. D. 2008. The components of plant tissue culture media II: organic additions, osmotic and pH effects, and support systems. Plant Propagation by Tissue Culture (3rd edition) Springer: 115–173. DOI: 10.1007/978-1-4020-5005-3_4
Goren L., Mattoo A. K., Anderson J. D. 1984. Ethylene binding during leaf development and senescence. Journal of Plant Physiology 117(3): 243–248. DOI: 10.1016/s0176-1617(84)80006-1
Jaiswal K., Batra K. A., Mehta B. K. 1984. The antimicrobial efficiency of root oil against human pathogenic bacteria and phytopathogenic fungi. Journal of Phytopathology 109(1): 90–93. DOI: 10.1111/j.1439-0434.1984.tb04234.x
Jin C. S., Keng C. L. 2013. Factors affecting the selection of callus cell lines and the preparation of the cell suspension culture of Artemisia annua L. Plant Tissue Culture and Biotechnology 23(2): 157–163. DOI: 10.3329/ptcb.v23i2.17507
Kubo M., Namba K., Nagatnoto N., Nagao T., Nakanishi J., Uuo H., Nishimura H. 1983. A new phenolic glycoside, curculigoside from rhizomes of Curculigo orchioides. Plant Medica 47(1): 52–55. DOI: 10.1055/s-2007-969949
Lakshmi N., Kumari S., Sharma Y., Sharma N. 2004. New phytoconstituents from the rhizomes of Curculigo orchioides. Pharmaceutical Biology 42(2): 131–134. DOI: 10.1080/13880200490510964
Wee S. L. 2015. The effects of elicitors and precursor on in vitro cultures of sauropus androgynus for sustainable metabolite production and antioxidant capacity improvement. PhD thesis. University of Nottingham.
Ma X. Y., Yi G. J., Huang X. L., Zeng J. W. 2009. Leaf callus induction and uspension culture establishment in lychee (Litchi chinensis Sonn.) cv. Huaizhi. Acta Physiol Plant 31(2): 401–405. DOI: 10.1007/s11738-008-0223-x
Madhavan V., Joshi R., Murali A., Yoganarasimhan S. N. 2007. Antidiabetic activity of Curculigo orchioides root tuber. Pharmaceutical Biology 45(1): 18–21. DOI: 10.1080/13880200601026259
Miguel-Chavez R. S., Soto-Hernandez M., Ramos-Valdivia A. C., Kite G. 2007. Alkaloid production in elicited cell suspension cultures of Erythrina americana Miller. Phytochemistry Reviews 6: 167–173. DOI: 10.1007/s11101-006-9045-x
Misra T. N., Singh R. S., Tripathi D. M. 1984. Aliphatic compounds from Curculigo orchioides rhizomes. Phytochemistry 23(10): 2369–2371. DOI: 10.1016/s0031-9422(00)80556-7
Misra T. N., Singh R. S., Tripathi D. M., Sharma S. C. 1990. Curculigol, a cycloartane triterpene alcohol from Curculigo orchioides. Phytochemistry 29(3): 929–931. DOI: 10.1016/0031-9422(90)80048-l
Miura H., Kitamura Y., Ikenaga T., Mizobe K., Shimizu T., Nakamura M., Kato Y., Yamada T., Maitani T., Goda Y. 1998. Anthocyanin production of Glehnia littoralis callus cultures. Phytochemistry 48(2): 279–283. DOI: 10.1016/S0031-9422(97)01115-1
Murashige T., Skoog F. 1962. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia plantarum 15(3): 473–497.
Muthuraj K., Kaffoor H. A., Nagarajan N. 2018. Establishment of in vitro protocol and impact of mycorrhization with phosphobacteria on micro propagated Pogostemon mollis Benth. (Lamiaceae). Journal of Taibah University for Science 12(1): 1–10. DOI: 10.1080/16583655.2018.1451060
Nagesh K. S., Shanthamma C. 2009. Antibacterial activity of Curculigo orchioides rhizome extract on pathogenic bacteria. African Journal of microbiology research 3(1): 5–9. DOI: 10.5897/AJMR.9000048
Nagesh K. S., Shanthamma C., Pullaiah T. 2010. Somatic embryogenesis and plant regeneration from callus cultures of Curculigo orchioides Gaertn. Indian Journal of Biotechnology 9(4): 408–413.
Pan M. J., Staden J. V. 1998. The use of charcoal in in vitro culture – A review. Plant Growth Regulation 26: 155–163. DOI: 10.1023/a:1006119015972
Pandit P., Singh A., Bafna A. R., Kadam P. V., Patil M. J. 2008. Evaluation of antiasthmatic activity of Curculigo orchioides Gaertn. rhizomes. Indian Journal Pharmaceutical Sciences 70(4): 440–444. DOI: 10.4103/0250-474X.44590
Prakasha A., Umesha S. 2018. Effect of growth hormones in induction of callus, antioxidants, and antibacterial activity in Nerium odorum. Journal of Applied Biology & Biotechnology 6(04): 21–25. DOI: 10.7324/JABB.2018.60404
Rahman N. N. A., Rosli R., Kadzimin S., Hakiman M. 2019. Effects of auxin and cytokinin on callus induction in Catharanthus roseus (L.) G. Don. Fundamental and Applied Agriculture 4(3): 928–932. DOI: 10.5455/faa.54779
Siddique A. B., Islam S. S. 2015. Effect of light and dark on callus induction and regeneration in Tobacco (Nicotiana tabacum L.). Bangladesh Journal of Botany 44(4): 643–651.
Singh V. 2009. Ethnobotany and Medicinal Plants of India and Nepal. Vol. 3. Scientific Publishers. 338 pp.
Souza J. M. M., Berkov S., Santos A. S. 2014. Improvement of friable callus production of Boerhaavia paniculata Rich and the investigation of its lipid profile by GC/MS. Anais da Academia Brasileira de Ciências 86(3): 1015–1027. DOI: 10.1590/0001-3765201420130098
Vasil I. K., Hildebrandt A. C. 1966. Growth and chlorophyll production in plant callus tissues grown in vitro. Planta 68(1): 69–82. DOI: 10.1007/bf00385372
Venukumar M. R., Latha M. S. 2002. Antioxidant activity of Curculigo orchioides in carbon tetrachloride –induced hepatopathy in rats. Indian Journal of Clinical Biochemistry 17(2): 80–87. DOI: 10.1007/bf02867976
Wala B. B., Jasrai Y. T. 2003. Micropropagation of an eendangered medicinal plant: Curculigo orchioides Gaertn. Plant Tissue Culture 13(1): 13–19.
Wan Y., Sorensen E. L., Liang G. H. 1988. The effects of kinetin on callus characters in alfalfa (Medicago sativa L.). Euphytica 39(3): 249–254. DOI: 10.1007/bf00037103
Wani S. J., Kagdi I. A., Tamboli P. S., Nirmalkar V. S., Patil S. N., Sidhu A. K. 2014. Optimization of MS media for callus and suspension culture of Costus pictus. International Journal of Scientific & Engineering Research 5(2): 390–394.
Xu J. P., Xu R. S. 1992. Cycloartane-type sapogenins and their glycosides from Curculigo orchioides. Phytochemistry 31(7): 2455–2458. DOI: 10.1016/0031-9422(92)83298-d
Yang S. F., Hoffman N. E. 1984. Ethylene biosynthesis and its regulation in higher plants. Annual Review of Plant Physiology 35(1): 155–189. DOI: 10.1146/annurev.pp.35.060184.001103
Yeoman M. M., Davidson A. W. 1971. Effect of light on cell division in developing callus cultures. Annals of Botany 35(5): 1085–1100. DOI: 10.1093/oxfordjournals.aob.a084544
Zang Q., Zhou L., Zhuge F., Yang H., Wang X., Lin X. 2016. Callus induction and regeneration via shoot tips of Dendrocalamus hamiltonii. SpringerPlus 5(1): 1799. DOI: 10.1186/s40064-016-3520-7
Zuo A. X., Shen Y., Jianga Z. Y., Zhanga X. M., Zhoua J., Lu J., Chen J. J. 2010. Three New Dimeric Orcinol Glucosides from Curculigo orchioides. Helvetica Chimica Acta 93(3): 504–510. DOI:10.1002/hlca.200900240
Turczaninowia is a golden publisher, as we allow self-archiving, but most importantly we are fully transparent about your rights.
Authors may present and discuss their findings ahead of publication: at biological or scientific conferences, on preprint servers, in public databases, and in blogs, wikis, tweets, and other informal communication channels.
Turczaninowia allows authors to deposit manuscripts (currently under review or those for intended submission to Turczaninowia) in non-commercial, pre-print servers such as ArXiv.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).