Structure of trichomes and epidermis of Begonia grandis (Begoniaceae) leaves

  • Elena V. Baikova Central Siberian Botanical Garden SB RAS Email: elenabaikova@mail.ru
  • Tatyana D. Fershalova Central Siberian Botanical Garden, The Siberian Branch of the RF Academy of Sciences Email: elenabaikova@mail.ru
  • Alexander A. Krasnikov Central Siberian Botanical Garden, The Siberian Branch of the RF Academy of Sciences Email: elenabaikova@mail.ru
  • Evgenia A. Karpova Central Siberian Botanical Garden, The Siberian Branch of the RF Academy of Sciences Email: elenabaikova@mail.ru
  • Konstantin S. Baikov Central Siberian Botanical Garden, The Siberian Branch of the RF Academy of Sciences Email: elenabaikova@mail.ru
Keywords: anatomy, Begonia, capitate trichomes, emergences, epidermis, glandular trichomes, leaf structure, morphology, multiserial conical hairs

Abstract

Structural features and localization of trichomes on the leaves of Begonia grandis were studied by means of a scanning electron microscope. The species is polymorphic and the most cold-resistant in the genus. New data on the epidermis structure, characteristics of trichomes and emergences as well as the patterns of their localization on the adaxial and abaxial sides of the leaf were obtained. The shape of the epidermal cells and the surface of their external periclinal walls at different stages of leaf development were described. Two types of multicellular hairs were found on the leaf blades: large (280–750 μm length) multiserial conical non-glandular hairs, and small (60–90 μm length) capitate glandular ones, as well as emergences (up to 1000 μm length). Multiserial conical hairs are located along the veins on the abaxial side and regardless of the veins on the adaxial side. Capitate glandular hairs are placed between the veins on the abaxial side, and all over the blade on the adaxial side. Emergences are located mainly along the leaf edges. They have the basis which includes subepidermal mesophyll cells with chloroplasts, and often vascular elements. Trichomes and emergences on the blades of unfolded leaves have already been formed. They have protective and secretory functions: conical hairs form a thick cover on the leaf primordium, and glandular trichomes secrete lipophilic substances that are released outside after rupture of the head wall. Emergences are involved in the accumulation of water-soluble flavonoids obtained as a result of active transport from leaf tissue through vascular elements.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Ager F. J., Ynsa M. D., Domnguez-Sol J. R., Lopez-Mart M. C., Gotor C., Romero L. C. 2003. Nuclear micro-probe analysis of Arabidopsis thaliana leaves. Nucl. Instr. Methods. Phys. Res. Sect. B. 210: 401−406.
Байкова Е. В., Фершалова Т. Д., Карпова Е. А. Структурные типы трихом в роде Begonia (Begoniaceae): обзор литературы // Растительный мир Азиатской России, 2019. № 2(34). С. 39–54. DOI: 10.21782/RMAR1995-2449-2019-2(39-54)
Байкова Е. В., Фершалова Т. Д., Цыбуля Н. В. Особенности строения эпидермы листа представителей рода Begonia при интродукции // Вестн. ИрГСХА, 2011. Вып. 44. С. 15–22.
Баранова М. А. Классификация морфологических типов устьиц // Бот. журн., 1985. Т. 70, № 12. С. 1585–1595.
Барыкина Р. П., Веселова Т. Д., Девятов А. Г., Джалилова Х. Х., Ильина Г. М., Чубатова Н. В. Справочник по ботанической микротехнике. Основы и методы. М.: Изд-во МГУ, 2004. 312 с.
Chen M. H., Huang T. C. 2016. Volatile and nonvolatile constituents and antioxidant capacity of oleoresins in three Taiwan citrus varieties as determined by supercritical fluid extraction. Molecules. 21(12): 1735. DOI: 10.3390/molecules21121735
Cowan M. M. 1999. Plant products as antimicrobial agents. Clin. Microbiol. Rev. 12(4): 564−582. DOI: 10.1128/CMR.12.4.564
Cuerrier A., Brouillet L., Barabe D. 1991. Micromorphologie foliaire des Begoniaceae. Bull. Mus. Natl. Hist. Nat. Sect. B. Adansonia 12(3-4): 297–335. [In French].
Das K., Tiwari R., Shrivastava D. 2010. Techniques for evaluation of medicinal plant products as antimicrobial agent: Current methods and future trends. J. Med. Pl. Res. 4(2): 104−111. DOI: 10.5897/JMPR09.030
Elle E., van Dam N. M., Hare J. D. 1999. Cost of glandular trichomes, a “resistance” character in Datura wrightii Regel (Solanaceae). Evolution 53(1): 22–35. DOI: 10.1111/j.1558-5646.1999.tb05330.x
Espigares T., Peco B. 1995. Mediterranean annual pasture dynamics: impact of autumn drought. J. Ecol. 83(1):135–142.
Forrest L. L., Hughes M., Hollingsworth P. M. 2005. A phylogeny of Begonia using nuclear ribosomal sequence data and morphological characters. Syst. Bot. 30(3), 671–682. DOI: 10.1600/0363644054782297
Frei B., Heinrich M., Herrmann D., Orjala J. E., Schmitt J., Sticher O. 1998. Phytochemical and biological investigation of Begonia heracleifolia. Planta Med. 64(4): 385−386. DOI: 10.1055/s-2006-957460
Frodin D. G. 2004. History and concepts of big plant genera. Taxon 53(3): 753–776. DOI: 10.2307/4135449
Glas J. J., Schimmel B. C. J., Alba J. M., Escobar-Bravo R., Schuurink R. C., Kant M. R. 2012. Plant glandular trichomes as targets for breeding or engineering of resistance to herbivores. Int. J. Mol. Sci. 13(12): 17077–17103. DOI: 10.3390/ijms131217077
Голиков А. В., Беспятых А. В., Сабиров Р. М. Растровый электронный микроскоп Hitachi TM-1000: использование в биологических исследованиях. Казань: Изд-во Казанского университета, 2018. 24 с.
Gregório B. S., Costa J. A. S., Rapini A. 2015. Three new species of Begonia (Begoniaceae) from Bahia, Brazil. PhytoKeys 44: 1–13. DOI: 10.3897/phytokeys.44.7993
Gu C., Peng C. I., Turland N. J. 2007. Begoniaceae. In: Flora of China. Vol. 13. Beijing & St. Louis. Pp. 153–207.
Guan K. Y., Yamaguchi H., Li J. X., Li J. X., Li H. Z., Ma H. 2007. Traditional uses of Begonias (Begoniaceae) in China. Acta Bot. Yunnan. 29: 58–66. [In Chinese].
Hoover W. S., Karegeannes C., Wiriadinata H., Hunter J. M. 2004. Notes on the geography of South-East Asian Begonia and species diversity in montane forests. Telopea. 10: 749–764.
Indrakumar I., Karpagam S., Jayaraman P. 2013. Anatomical protocol of Begonia dipetala Graham for the specific identity of the plant. Int. J. Pl. Res. 3(3): 27–38.
Jarén-Galán M., Nienaber U., Schwartz S. J. 1999. Paprika (Capsicum annuum) oleoresin extraction with supercritical carbon dioxide. J. Agric. Food Chem. 47(9): 3558–3564. DOI: 10.1021/jf9900985
Johnson H. B. 1975. Plant pubescence: an ecological perspective. Bot. Rev. 41(3): 233−258.
Карпова Е. А., Фершалова Т. Д. Динамика содержания пигментов в листьях Begonia grandis Dryander subsp. grandis при интродукции в Западной Сибири (г. Новосибирск) // Вестник Томского гос. ун-та. Биология, 2016. № 1(33). С. 140–158.
Karpova E. A., Fershalova T. D., Petruk A. A. 2016. Flavonoids in adaptation of Begonia grandis Dryander subsp. grandis introduced in West Siberia (Novosibirsk). Journal of Stress Physiology & Biochemistry 12(3): 44–56.
Karpova E. A., Krasnikov A. A., Fershalova T. D., Baikova E. V., Petruk A. A., Yakimova Yu. L. 2019. Phenolic compounds and antimicrobial properties of Begonia grandis Dryand. subsp. grandis leaves. Botanica Pacifica. 8(2): 51–61. DOI: 10.17581/bp.2019.08202
Kim H. J., Seo E., Kim J. H., Cheong H., Kang B.-C., Choi D. 2012. Morphological classification of trichomes associated with possible biotic stress resistance in the genus Capsicum. Pl. Pathol. J. 28(1): 107–113. DOI: 10.5423/PPJ.NT.12.2011.0245
Колалите М. Р. Динамика ультраструктуры головчатых железистых волосков // Бот. журн., 1994. Т. 79, № 9. С. 34–42.
Kolalite M. R. 1998. Comparative analysis of ultrastructure of glandular trichomes in two Nepeta cataria chemotypes (N. cataria and N. catena var. citriodora). Nord. J. Bot. 18(5): 589–598.
Красников А. А., Полубоярова Т. В., Шишкин С. В. Центр коллективного пользования микроскопического анализа биологических объектов ЦСБС СО РАН: справочное пособие. Новосибирск: Академическое изд-во «Гео», 2016. 46 с.
Levin D. A. 1973. The role of trichomes in plant defense. Q. Rev. Biol. 48(1): 3−15.
Li X., Tian D., Li C., Liu K., Li X., Nakata M. 2014. The history, culture, utilization, germplasm diversity and research advances of Begonia grandis Dry. Botanical Research 3: 117–139. [In Chinese]. DOI: 10.12677/br.2014.33017
McLellan T. 2005. Correlated evolution of leaf shape and trichomes in Begonia dregei (Begoniaceae). Am. J. Bot. 92(10): 1616–1623. DOI: 10.3732/ajb.92.10.1616
McLellan T., Dengler N. G. 1995. Pattern and form in repeated elements in the developments of simple leaves of Begonia dregei. Int. J. Pl. Sci. 156(5): 581–589.
Meyberg M., Krohn S., Brummer B. Kristen U. 1991. Ultrastructure and secretion of glandular trichomes of tobacco leaves. Flora 185: 357−363.
Муравник Л. Е. Трихомы перикарпия у видов Juglans (Juglandaceae): сканирующая микроскопия, флюоресцентная микроскопия и гистохимия // Цитология, 2008. Т. 50, №. 7. С. 636–642.
Muravnik L. E., Kostina O. V., Shavarda A. L. 2014. Development, structure and secretion compounds of stipule colleters in Pentas lanceolata (Rubiaceae). S. Afr. J. Bot. 93: 27–36. DOI: 10.1016/j.sajb.2014.03.007
Muravnik L. E., Kostina O. V., Shavarda A. L. 2016. Glandular trichomes of Tussilago farfara (Senecioneae, Asteraceae). Planta. 244(3): 737−752. DOI: 10.1007/s00425-016-2539-x
Muravnik L. E., Shavarda A. L. 2011. Pericarp peltate trichomes in Pterocarya rhoifolia: histochemistry, ultrastructure, and chemical composition. Int. J. Pl. Sci. 172(2): 159–172.
Muravnik L. E., Shavarda A. L. 2012. Leaf glandular trichomes in Empetrum nigrum: morphology, histochemistry, ultrastructure and secondary metabolites. Nord. J. Bot. 30(4): 470−481. DOI: 10.1111/j.1756-1051.2011.01322.x
Oteiza P. I., Erlejman A. G., Verstraeten S. V., Keen C. L., Fraga C. G. 2005. Flavonoid-membrane interactions: a protective role of flavonoids at the membrane surface? Clinical & Developmental Immunology 12(1): 19–25.
Peng C.-I., Ku S.-M., Kono Y., Chung K.-F., Liu Y. 2008. Two new species of Begonia (sect. Coelocentrum, Begoniaceae) from limestone areas in Guangxi, China: B. arachnoidea and B. subcoriacea. Bot. Stud. 49: 405–418.
Petrussa E., Braidot E., Zancani M., Peresson C., Bertolini A., Patui S., Vianello A. 2013. Plant flavonoids – biosynthesis, transport and involvement in stress responses. Int. J. Molec. Sci. 14(7): 14950−14973.
Qian J., Liu Y., Ma C., Chao N., Chen Q., Zhang Y., Luo Y., Cai D., Wu Y. 2019. Positive selection of squalene synthase in Cucurbitaceae plants. Int. J. Genomics. 9: 5913491. DOI: 10.1155/2019/5913491
Shui Y. M., Li Q. R., Huang S. H. 1999. Observation of leaf epidermis and its hair of Begonia L. from Yunnan. Acta Bot. Yunnan. 21(3): 309−316. [In Chinese].
Skaltsa H., Verykokidou E., Harvala C., Karabourniotis G., Manetasi Y. 1994. UV-B protective potential and flavonoid content of leaf hairs of Quercus ilex. Phytochemistry 37(4): 987−990. DOI: 10.1016/S0031-9422(00)89514-X
Sosef M. S. M. 1994. Refuge Begonias: taxonomy, phylogeny and historical biogeography of Begonia sect. Loasibegonia and sect. Scutobegonia in relation to glacial rain forest refuges in Africa. Wageningen: Agricultural University Wageningen Paper. 306 рр.
Tebbitt M. C. 2005. Begonias: cultivation, identification, and natural history. Portland. 272 pp.
Telepova M. N., Budantzev A. L., Shavarda A. L. 1992. Etude comparative de la sécrétion des terpénes par les éléments glandulaires foliaires chez différentes espéces du genre Dracocephalum L. (Labiatae). Bull. Soc. bot. Fr., Lettres bot. 139(3): 247–264. [In French]. DOI: 10.1080/01811797.1992.10824962
Тимонин А. К. Ботаника. Т. 3. М.: Академия, 2007. 352 с.
Tissier A. 2012. Glandular trichomes: What comes after expressed sequence tags? The Plant Journal 70: 51–68.
Valkama E., Salminen J. P., Koricheva J., Pihlaja K. 2003. Comparative analysis of leaf trichome structure and composition of epicuticular flavonoids in Finnish birch species. Ann. Bot. 91(6): 643–655.
Vassilyev A. E., Muravnik L. E. 1988. The ultrastructure of the digestive glands in Pinguicula vulgaris L. (Lentibulariaceae) relative to their function. I. The changes during maturation. Ann. Bot. 62(4): 329−341.
Wagner G. J., Wang E., Shepherd R. W. 2004. New approaches for studying and exploiting an old protuberance, the plant trichome. Ann. Bot. 93(1): 3–11. DOI: 10.1093/aob/mch011
Wang E., Wagner G. J. 2003. Elucidation of the functions of genes central to diterpene metabolism in tobacco trichomes using posttranscriptional gene silencing. Planta 216(4): 686–691.
Werker E., Putievsky E., Ravid U. 1985a. The essential oils and glandular hairs in different chemotypes of Origanum vulgare L. Ann. Bot. 55(6): 793–801. DOI: 10.1093/oxfordjournals.aob.a086958
Werker E., Ravid U., Putievsky E. 1985b. Glandular hairs and their secretion in the vegetative and reproductive organs of Salvia sclarea and S. dominica. Israel J. Bot. 34(2–4): 239–252.
Werker E., Ravid U., Putievsky E. 1985c. Structure of glandular hairs and identification of main components of their secreted material in some species of the Labiatae. Israel J. Bot. 34(1): 31–45.
Wollenweber E., Dorsam M., Dorr M., Roitman J. N., Valant-Vetschera K. M. 2005. Chemodiversity of surface flavonoids in Solanaceae. Z. Naturf. 60c: 661−670.
Zhang J., Chen Y., Li B., Wang M. 1997. Studies on the chemical constituents of Begonia evansiana Andr. Zhongguo Zhongyao Zazhi. 22(5): 295−296. [In Chinese].
Published
2020-06-26
How to Cite
Baikova E. V., Fershalova T. D., Krasnikov A. A., Karpova E. A., Baikov K. S. Structure of trichomes and epidermis of Begonia grandis (Begoniaceae) leaves // Turczaninowia, 2020. Vol. 23, № 2. P. 120-130 DOI: 10.14258/turczaninowia.23.2.16. URL: https://turczaninowia.asu.ru/article/view/8116.
Section
Science articles