Karyotypes and nuclear DNA content in some Trollius L. and Hegemone Bunge ex Ledeb. (Ranunculaceae) species of Asian Russia and China

  • Elisaveta Yu. Mitrenina Tomsk State University Email: emitrenina@gmail.com
  • Andrey S. Erst Tomsk State University Email: erst_andrew@yahoo.com
  • Michail V. Skaptsov Altai State University Email: mr.skaptsov@mail.ru
  • Maxim G. Kutsev Siberian Federal University Email: m_kucev@mail.ru
  • Alexander A. Kuznetsov Tomsk State University Email: erst_andrew@yahoo.com
Keywords: chromosomes, C-value, globe-flower, karyotype, nuclear DNA content

Abstract

The karyotypes of Trollius altaicus C. A. Mey., T. asiaticus L., T. ledebourii Rchb. и Hegemone lilacina Bunge have been studied. Somatic chromosome number 2n = 16 was determined for all the specimens investigated. Three Trollius species have chromosome complements similar to each other in length and morphological types of chromosomes (metacentric, submetacentric and subtelocentric ones). The karyotype formula of Trollius altaicus is 2n = 2x = 16 = 14sm + 2st, T. asiaticus is 2n = 2x = 16 = 2m + 10sm + 2sm/st + 2st, and T. ledebourii is 2n = 2x = 16 = 2m/sm + 10sm + 4st. We have studied the karyotype of Hegemone lilacina for the first time, and its formula is 2n = 2x = 16 = 4m + 8sm + 4st. Also, we have determined nuclear DNA content (C-value) for 8 species by the flow cytometry. Hegemone lilacina and Trollius yunnanensis Ulbr. have the highest C-values (9.80 ± 0.29 pg and 9.39 ± 0.29 pg respectively), while the lowest C-values belong to T. farreri Stapf (8.20 ± 0.24 pg) and H. micrantha (C. Winkl. et Komarov) Butkov (8.28 ± 0.25 pg). The nuclear DNA content of T. altaicus specimens found in different locations were identical (8.48 ± 0.25 and 8.51 ± 0.25 pg) and similar-sized with T. vicarius Sipliv. (8.45 ± 0.28 pg). Two T. asiaticus specimens found in different locations appeared to vary in C-value (8.66 ± 0.26 pg and 8.98 ± 0.28 pg), and to be similar-sized with T. chinensis Bunge (8.87 ± 0.26 pg).

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Altinordu F., Peruzzi L., Yu Y., He X. 2016. A tool for the analysis of chromosomes: KaryoType. Taxon 65(3): 586–592. DOI: 10.12705/653.9
Бадаева Е. Д., Салина Е. А. Структура генома и хромосомный анализ растений // Вавиловский журнал генетики и селекции, 2013. Т. 17, № 4/2. С 1017–1043.
Baltisberger M., Hörandl E. 2016. Karyotype evolution supports the molecular phylogeny in the genus Ranunculus (Ranunculaceae). Perspectives in Plant Ecology, Evolution and Systematics 18: 1–14. DOI: 10.1016/j.ppees.2015.11.001
De Storme N., Mason A. 2014. Plant speciation through chromosome instability and ploidy change: Cellular mechanisms, molecular factors and evolutionary relevance. Current Plant Biology 1: 10–33. DOI: 10.1016/j.cpb.2014.09.002.
Doležel J., Bartoš J. 2005. Plant DNA flow cytometry and estimation of nuclear genome size. Annals of Botany 95: 99–110. DOI:10.1093/aob/mci005
Doležel J., Sgorbati S., Lucretti S. 1992. Comparison of three DNA fluorochromes for flow cytometric estimation of nuclear DNA content in plants. Physiologia Plantarum 85: 625–631. DOI: 10.1111/j.1399-3054.1992.tb04764.x
Doroszewska A. 1967. Chromosomes of some Trollius species. Acta Societatis Botanicorum Poloniae 36(3): 567–577.
Kadota Y. 1987. Genus Trollius L. (Ranunculaceae) in Japan. Bull. Natn. Sci. Mus., Tokyo. Ser. B. 13(3): 107–121.
Kubešová M., Moravcová L., Suda J., Jarošík V., Pyšek P. 2010. Naturalized plants have smaller genomes than their non-invading relatives: a flow cytometric analysis of the Czech alien flora. Preslia 82: 81–96.
Kurita M. 1955. Cytological studies in Ranunculaceae IV. The karyotype analysis in Actaea and some other genera. Jap. Jour. Genet. 30: 124–127.
Kurita M. 1957. Chromosome studies in Ranunculaceae VI. Karyotypes of six genera. Rep. Biol. Inst. Ehime Univ. 3: 9–15.
Kurita M. 1959. Chromosome studies in Ranunculaceae XIV. Karyotypes of several genera. Mem. Ehime Univ. Sect. II. 3: 25–32.
Kurita M. 1960. Chromosome studies in Ranunculaceae XVII. Karyotypes of some species. Mem. Ehime Univ. Sect. II. 4: 59–66.
Langlet O. 1932. Über chromosomenverhältnisse und systematik der Ranunculaceae. Svensk Botanisk Tidskrift. 26: 381–400.
Levan A., Fredgam K., Sandberg A. 1964. Nomenclature for centrometric position of chromosomes. Hereditas 52: 201–220.
Li L., Tamura M. 2001. Trollius L. In: Flora of China. Vol. 6. Ranunculaceae. St Louis: MO: Missouri Botanical Garden. Pp. 133–438.
Luferov A., Erst A., Luferov D., Shmakov A., Wang W. 2018. The genus Trollius (Ranunculaceae) in the Russian Far East. Turczaninowia 21, 2: 110–116. DOI: 10.14258/turczaninowia.21.2.12
Mártonfiová L. 2013. A method of standardization of chromosome length measurement. Caryologia: International Journal of Cytology, Cytosystematics and Cytogenetics 66(4): 304–312. DOI: 10.1080/00087114.2013.854565
Митренина Е. Ю., Эрст А. С. Кариосистематическое изучение рода Eranthis Salisb. (Ranunculaceae) // Проблемы ботаники Южной Сибири и Монголии, 2019. Т. 1(18). С. 145–149. DOI: 10.14258/pbssm.2019028
Mlinarec J., Sˇatovic Z., Mihelj D., Malenica N., Besendorfer V. 2012. Cytogenetic and phylogenetic studies of diploid and polyploid members of Tribe Anemoninae (Ranunculaceae). Plant Biology 14: 525–536. DOI: 10.1111/j.1438-8677.2011.00519.x
Leitch I. J., Johnston E., Pellicer J., Hidalgo O., Bennett M. D. 2019. Plant DNA C-values Database (Release 7.1). URL: https://cvalues.science.kew.org/ (Accessed 05 January 2020).
Rice A., Glick L., Abadi Sh., Einhorn M., Kopelman N.M., Salman-Minkov A., Mayzel J., Chay O., Mayrose I. 2015. The Chromosome Counts Database (CCDB) – a community resource of plant chromosome numbers. New Phytol. 206(1): 19–26.
Ricroch A., Yockteng R., Brown S. C., Nadot S. 2005. Evolution of genome size across some cultivated Allium species. Genome 48: 511–520. DOI: 10.1139/g05-017
Smirnov S., Skaptsov M., Shmakov A., Fritsch R., Friesen N. 2017. Spontaneous hybridization among Allium tulipifolium and A. robustum (Allium subg. Melanocrommyum, Amaryllidaceae) under cultivation. Phytotaxa 303(2): 155–164. DOI: 11646/phytotaxa.303.2.5
Смирнов Ю. А. Ускоренный метод исследования соматических хромосом плодовых // Цитология, 1968. Т. 10, № 12. С. 1601–1602.
Stebbins G. L. 1971. Chromosomal evolution in higher plants. London: Arnold. 216 pp.
Tamura M. 2002. Trollius L. In: Die Natürlichen Pflanzenfamilien. Ed. P. Hiepko. Band 17a, IV. Berlin: Duncker und Humblot. Pp. 238–244.
Vitales D., Alvarez I., Garcia S., Hidalgo O., Feliner G. N., Pellicer J., Valles J., Garnatje T. 2019. Genome size variation at constant chromosome number is not correlated with repetitive DNA dynamism in Anacyclus (Asteraceae). Annals of Botany mcz183. DOI: 10.1093/aob/mcz183
Yang Q.-E. 2002. Cytology of the tribe Trollieae and of the tribe Cimicifugeae in the Ranunculaceae: a comparative study. Acta Phytotaxonomica Sinica 40: 52–65.
Yuan Q., Yang Q.-E. 2006. Tribal relationships of Beesia, Eranthis, and seven other genera of Ranunculaceae: evidence from cytological characters. Botanical Journal of the Linnean Society 150: 267–289.
Zonneveld B. J. M., Leitch I. J., Bennett M. D. 2005. First nuclear DNA amounts in more than 300 angiosperms. Annals of Botany 96: 229–244. DOI: 10.1093/aob/mci170
Published
2020-03-23
How to Cite
Mitrenina E. Y., Erst A. S., Skaptsov M. V., Kutsev M. G., Kuznetsov A. A. Karyotypes and nuclear DNA content in some Trollius L. and Hegemone Bunge ex Ledeb. (Ranunculaceae) species of Asian Russia and China // Turczaninowia, 2020. Vol. 23, № 1. P. 90-98 DOI: 10.14258/turczaninowia.23.1.9. URL: http://turczaninowia.asu.ru/article/view/7583.
Section
Science articles

Most read articles by the same author(s)

1 2 > >>