Effect of ascorbic acid and glutathione on somatic embryogenesis induction in Picea pungens Engelmann
Abstract
Effect of exogenic antioxidants – ascorbic acid (AA) and reduced glutathione (GSH) – on initiation and proliferation processes of somatic embryos of blue spruce (Picea рungens) in vitro embryos culture in dependence of stage development, genotype of donor trees, medium composition was shown using a cytological analysis. Initiation of somatic embryogenesis was carried out on basic media ½ DSR and ½ LV supplemented with AA (0 and 300 mg/l) and/or GSH (0 and 300 mg/l). The highest frequency of callus formation (from 60 up to 100 %) was obtained when establishing in zygotic embryo culture at the cotyledon stage. Formation of embryonal-suspensor masses (ESM) was detected at the initiation stage with the help of cytological analysis. The highest frequency of ESM formation achieved 8,4 % on ½ DSR medium and 28 % on ½ LV medium. Active proliferation was observed in only one of the genotypes studied. Application of antioxidants stimulated the frequency both of callus formation and ESM, however, AA and GSH affected on development of somatic embryos in different ways. Application of AA at the initiation and proliferation stages promoted formation of somatic embryos; GSH, on the contrary, reduced their development. Formation of the great number of somatic embryos was achieved with optimal combination of antioxidants: culture incubation at the initiation stage with AA and addition of GSH in culture medium at proliferation stage.
Downloads
Metrics
References
Afele J. C., Saxena P. K. 1995. Somatic embryogenesis in blue spruce (Picea pungens Engelmann). In: Somatic Embryogenesis in Woody Plants Forestry Sciences. Eds. S. M. Jain, P. K. Gupta, R. J. Newton. Springer Science+Business Media Dordrecht, 44–46: 99–109.
Afele J. C., Senaratha T., Saxena P. 1992. Somatic embryogenesis and plant regeneration from zygotic embryo culture Picea pungens. Plant Cell Reports 11: 299–303.
Belmonte M. F., Stasolla C. 2009. Altered HBK3 expression affects glutathione and ascorbate metabolism during the early phases of Norway spruce (Picea abies) somatic embryogenesis. Plant Physiol Biochem. 47: 904–911.
Cram W. H. 1984. Needle color and vigor of inbred progenies of Picea pungens. HortScience. 19: 125–126.
Daubenmire R. 1972. On the relation between Picea pungens and Picea engelmannii in the Rocky Mountains. Canadian Journal of Botany 50: 733–742.
Dunstan D. I., Bekkaoui F., Pilon M., Fowke L. C., Abrams S. M. 1988. Effects of abscisic acid and analogues on the maturation of white spruce (Picea glauca) somatic embryos. Plant Sci. 58: 77–84.
Filonova H. L., Bozhkov P. V., von Arnold S. 2000. Developmental pathway of somatic embryogenesis in Picea abies as revealed by time-lapse tracking. J. Exp. Bot. 51: 249–264.
Gifford E. M., Foster A. S. 1989. Morphology and evolution of vascular plants.W. H. Freeman and Company, New York, 327 pр.
Gupta P. K., Durzan D. J. 1985. Shoot multiplication from mature trees of Douglas-fir (Pseudotsuga menziesii) and sugar pine (Pinus lambertiana). Plant Cell Repts. 4: 177–179.
Gupta P. K., Durzan D. J. 1986. Plantlent regeneration via somatic embryogenesis from subcultured callus of mature embryos of Picea abies (Norway spruce). In Vitro Cellular and. Developmental Biology - Plant 22: 685–688.
Hakman I., Rennie P., Fowke L. C. 1987. A light and electron microscopy study of Picea glauca (white spruce) somatic embryos. Protoplasma 140: 100–109.
Hakman I., von Arnold S. 1985. Plantlet regeneration through somatic embryogenesis in Picea abies. J. Plant Physiol. 121: 149–158.
Krogstrup P. 1986. Embryo-like structures from cotyledons and ripe embryos of Norway spruce (Picea abies). Can. J. For. Res. 16: 664–668.
Lelu M.-A., Bornman C. H. 1990. Induction of somatic embryogenesis in excised cotyledons of Picea abies and Picea mariana. Plant Physiol. Biochem. 28: 785–791.
Liso R., Calabrese G., Bitonti M. B., Arrigoni O. 1984. Relationship between ascorbic acid and cell division. Exp. Cell Res. 150: 314–320.
Litvay J. D., Verma D. C., Jonson M. A. 1985. Influence of loblolly pine (Pinus taeda L.) culture medium and its components on growth and somatic embryogenesis of wild carrot (Daucus carota L.). Plant Cell Rep. 4: 325–328.
Malabadi R. B., Johannes V. S. 2005. Role of antioxidants and amino acids on somatic embryogenesis of Pinus patula. In Vitro Cellular and. Developmental Biology - Plant 41: 181–186.
Misra S. 1994. Conifer zygotic embryogenesis, somatic embryogenesis, and seed germination: biochemical and molecular advances. Seed Sci. Res. 4: 357–384.
Pullman G. S., Zeng X., Copeland–Kamp B., Crockett J., Lucrezi J., May S. W., Bucalo K. 2015. Conifer somatic embryogenesis: improvements by supplementation of medium with oxidation–reduction agents. Tree Physiol. 35(2): 209–224.
Roberts D. R., Flinn B. S., Webb D. T., Webster F. B., Sutton B. C. S. 1989. Characterization of immature embryos of interior spruce by SDS-PAGE and microscopy in relation to their competence for somatic embryogenesis. Plant. Cell. Rep. 8: 285–288.
Roberts D. R., Shutton B. C. S., Flinn B. S. 1990. Synchronous and high-frequency germination of interior spruce somatic embryos following partial drying at high relative humidity. Canadian Journal of Botany 68: 1086–1090.
Savella L. 1965. Propagation of Picea pungens glauca cultivars. The International Plant Propagators' Society Proceedings. 15: 199–202.
Shalaev E. A., Tret’yakova I. N. 2011. Induction of somatic embryogenesis of Рicea ajanensis in culture in vitro. In: Khvoynyye borealnoy zony [Coniferous of boreal region] XXVIII, 1–2: 69–71 [In Russian]. (Шалаев Е. А., Третьякова И. Н. Индукция соматического эмбриогенеза у ели аянской в культуре in vitro // Хвойные бореальной зоны, 2011. Т. XXVIII, № 1–2. С. 69–71).
Stasolla C. 2010. Glutathione redox regulation of in vitro embryogenesis. Plant Physiology and Biochemistry. 48: 319–327.
Stasolla C., Yeung E. C. 1999. Ascorbic acid improves conversion of white spruce somatic embryos. In Vitro Cellular and. Developmental Biology - Plant 35: 316–319.
Stasolla C., Yeung E. C. 2003. Recent advances in conifer somatic embryogenesis: improving somatic embryo quality. Plant Cell, Tissue and Organ Culture. 74: 15–35.
Tret’yakova I. N., Barsukova A. V. 2010. Conservation of coniferous species genetic resources of Siberia using in vitro somatic embryogenesis – modern method of biotechnology. In: Khvoynyye borealnoy zony [Coniferous of boreal region] XXVII, 1–2:180–186 [In Russian]. (Третьякова И.Н., Барсукова А.В. Сохранение генофонда хвойных видов Сибири при помощи соматического эмбриогенеза in vitro – современного метода биотехнологии // Хвойные бореальной зоны, 2010. Т. XXVII. № 1–2. С. 203–206).
Tret’yakova I. N., Barsukova A. V. 2012. Somatic Embryogenesis in in vitro Culture of Three Larch Species. Russian Journal of Developmental Biology. 43: 353–361.
Tret’yakova I. N., Voroshilova E. V. Shuvaev D. N. Pak M. E. 2012. The prospects of clonal micropropagation of coniferous using in vitro culture via somatic embryogenesis. In: Khvoynyye borealnoy zony [Coniferous of boreal region] ХХХ, 1–2: 180–186 [In Russian]. (Третьякова И. Н., Ворошилова Е. В., Шуваев Д. Н., Пак М. Э. Перспективы микроклонального размножения хвойных в культуре in vitro через соматический эмбриогенез // Хвойные бореальной зоны, 2012.Т. ХХХ. № 1–2. С. 180–186).
Trigiano R. N., Gray D. J. 2000. Plant Tissue Culture Concepts and Laboratory Exercises, 2nd edition. Boca Raton, USA: CRC Press, 454 pp.
Copyright (c) 2017 Turczaninowia
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Turczaninowia is a golden publisher, as we allow self-archiving, but most importantly we are fully transparent about your rights.
Authors may present and discuss their findings ahead of publication: at biological or scientific conferences, on preprint servers, in public databases, and in blogs, wikis, tweets, and other informal communication channels.
Turczaninowia allows authors to deposit manuscripts (currently under review or those for intended submission to Turczaninowia) in non-commercial, pre-print servers such as ArXiv.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).