The features of xylem tracheary elements in some herbaceous members of the family Convolvulaceae Horan.

Keywords: Convolvulaceae, Cuscuta, diameters of tracheary elements, stem anatomy, vines, xylem

Abstract

Numerous narrow xylem tracheary elements (tracheids and vessels) are present in liana stems, along with a few wide vessels that perform the main water-conducting function. This trait, known as “vessel dimorphism”, has been identified in studies on water-conducting tissue in autotrophic plants, including a large number of perennial climbing plants and a number of annual vines. Information is lacking on the presence of vessel dimorphism in parasitic plants of the lianescent habit. In this study, we performed a structural analysis of stems in the autotrophic herbaceous vines of Convolvulus arvensis L. and Calystegia sepium (L.) R. Br., as well as in the parasitic vines of Cuscuta monogyna Vahl, Cuscuta planiflora Ten., Cuscuta approximata Bab., and Cuscuta campestris Yunck., of the family of Convolvulaceae Horan. The xylem of C. arvensis and C. sepium contains a few wide conductive elements and many narrow ones. This feature is typical of autotrophic climbing plants. Only narrow tracheary elements are present in the xylem of the parasitic vines of the genus of Cuscuta L. (dodders). The total number of the tracheary elements is an order of magnitude less in the dodders than it is in the autotrophic vines. It is possible that the autotrophic ancestor of dodders lost the characteristic feature of the xylem of climbing plants, known as vessel dimorphism, during its transition to the parasitic lifestyle.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Angyalossy V., Pace M. R., Lima A. C. 2015. Liana anatomy: a broad perspective on structural evolution of the vascular system. In: Ecology of Lianas. Chichester: Wiley-Blackwell. Pp. 253–287. DOI: 10.1002/9781118392409.ch19
Барыкина Р. П., Веселова Т. Д., Девятов А. Г., Джалилова Х. Х., Ильина Г. М., Чубатова Н. В. Справочник по ботанической микротехнике. Основы и методы. М.: МГУ, 2004. 312 с.
Carlquist S. 1985. Observations on functional wood histology of vines and lianas: vessel dimorphism, tracheids, vasicentric tracheids, narrow vessels, and parenchyma. Aliso (11)2: 139–157. DOI: 10.5642/aliso.19851102.03
Carlquist S., Hanson M. A. 1991. Wood and stem anatomy of Convolvulaceae: a survey. Aliso (13)1: 51–94. DOI: 10.5642/aliso.19911301.03
Clayson C., García-Ruiz I., Costea M. 2014. Diversity, evolution, and function of stomata bearing structures in Cuscuta (dodders, Convolvulaceae): From extrafloral nectar secretion to transpiration in arid conditions. Perspect. Plant Ecol. 16(6): 310–321. DOI: 10.1016/j.ppees.2014.08.004
Ewers F. W., Fisher J. B., Chiu S.-T. 1990. A survey of vessel dimensions in stems of tropical lianas and other growth forms. Oecologia (84)4: 544–552. DOI: 10.1007/BF00328172
Ewers F. W., Rosell J. A., Olson M. E. 2015. Lianas as Structural Parasites. In: Functional and Ecological Xylem Anatomy. Springer: Cham. Pp. 163–188. DOI: 10.1007/978-3-319-15783-2_6
Fay D. S., Gerow K. 2013. A biologist's guide to statistical thinking and analysis. In: WormBook: The Online Review of C. elegans Biology. URL: http://www.wormbook.org/chapters/www_statisticalanalysis/statisticalanalysis.html (Accessed 24 February 2021).
Ganthaler А., Marx K., Beikircher B., Mayr S. 2019. Are hydraulic patterns of lianas different from trees? New insights from Hedera helix. J. Exp. Bot. (70)10: 2811–2822. DOI: 10.1093/jxb/erz071
García M. A., Costea M., Kuzmina M., Stefanović S. 2014. Phylogeny, character evolution, and biogeography of Cuscuta (dodders; Convolvulaceae) inferred from coding plastid and nuclear sequences. Am. J. Bot. 101(4): 670–690. DOI: 10.3732/ajb.1300449
Goremykina E. V., Dinekina E. A. 2016. Traits of stem anatomy of some herbaceous members of the family Polygonaceae Juss. Moscow Univ. Biol. Sci. Bull. 71: 121–125. DOI: 10.3103/S0096392516030056
Hull R. 2014. Plant to Plant Movement. In: Plant Virology. San Diego: Academic Press. Pp. 669–751. DOI: 10.1016/b978-0-12-384871-0.00012-1
Kaiser B., Vogg G., Fürst U. B., Albert M. 2015. Parasitic plants of the genus Cuscuta and their interaction with susceptible and resistant host plants. Front. Plant Sci. 6: 45. URL: https://www.frontiersin.org/article/10.3389/fpls.2015.00045 (Accessed 24 February 2021).
Nickrent D. L. 2020. Parasitic angiosperms: how often and how many? Taxon 69(1): 5–27. DOI: 10.1002/tax.12195
Noureen S., Noreen S., Ghumman S. A., Batool F., Bukhari S. N. A. 2019. The genus Cuscuta (Convolvulaceae): An updated review on indigenous uses, phytochemistry, and pharmacology. Iran. J. Basic Med. Sci. 22(11): 1225–1252. DOI: 10.22038/ijbms.2019.35296.8407
Rajput K. S., Lekhak M. M., Kapadane K. K., Yadav S. R. 2017. Formation of tri-lobed stem and successive cambia in the stems of Argyreia hookeri C. B. Clarke (Convolvulaceae). Flora 233: 140–149. DOI: 10.1016/j.flora.2017.06.005
Северова Е. Э. Анатомия стеблей среднерусских повилик (Cuscuta L.) // Анатомия растений: традиции и перспективы: материалы международного симпозиума, посвященного 90-летию профессора Людмилы Ивановны Лотовой. Ч. 2. (г. Москва, 16–22 сентября 2019 г.). М.: МАКС пресс, 2019. С. 253–264.
Sharma Y. P., Kapoor V. 2014. Parasitic angiosperms and biology of Cuscuta species – an overview. In: Review of Plant Pathology. Vol. 6. Jodhpur: Scientific Publishers. Pp. 577–608.
Shimizu K., Aoki K. 2019. Development of parasitic organs of a stem holoparasitic plant in genus Cuscuta. Front. Plant Sci. 10: 1435. URL: https://www.frontiersin.org/articles/10.3389/fpls.2019.01435/full (Accessed 24 February 2021).
Solereder H. 1908. Systematic anatomy of the dicotyledons. A handbook for laboratories of pure and applied botany. Vol. 2. Oxford: Clarendon Press. P. 1182.
Stefanović S., Austin. D., Olmstead R. G. 2003. Classification of Convolvulaceae: a phylogenetic approach. Syst. Bot. 28(4): 791–806. DOI: 10.1043/02-45.1
Sun G., Xu Y., Liu H., Sun T., Zhang J, Hettenhausen C., Shen G., Qi J., Qin Y., Li J., Wang L., Chang W., Guo Z., Baldwin I.T., Wu J. 2018. Large-scale gene losses underlie the genome evolution of parasitic plant Cuscuta australis. Nat. Commun. 9: 2683. URL: https://www.nature.com/articles/s41467-018-04721-8#citeas (Accessed 24 February 2021).
Tibbetts T., Ewers F. 2000. Root pressure and specific conductivity in temperate lianas: exotic Celastrus orbiculatus (Celastraceae) vs. native Vitis riparia (Vitaceae). Am. J. Bot. 87(9): 1272–1278. DOI: 10.2307/2656720
Visser M. D., Muller-Landau H. C., Schnitzer S. A., de Kroon H., Jongejans E., Wright S. J. 2018. A host-parasite model explains variation in liana infestation among co-occurring tree species. J. Ecol. 106(6): 2435–2445. DOI: 10.1111/1365-2745.12997
Yoshida S., Cui S., Ichihashi Y., Shirasu K. 2016. The haustorium, a specialized invasive organ in parasitic plants. Annu. Rev. Plant Biol. 67: 643–667. DOI: 10.1146/annurev-arplant-043015-111702
Жук А. В. Происхождение паразитизма у цветковых растений // Вестник СПбГУ. Серия 3. Биология, 2001. Вып. 1, № 3. С. 24–37.
Published
2021-10-01
How to Cite
Goremykina Y. V., Azaryan A. D., Akime E. L., Leshchina K. Y. The features of xylem tracheary elements in some herbaceous members of the family Convolvulaceae Horan. // Turczaninowia, 2021. Vol. 24, № 3. P. 129-137 DOI: 10.14258/turczaninowia.24.3.10. URL: http://turczaninowia.asu.ru/article/view/10448.
Section
Science articles