Herbarium collections in molecular genetic studies
Abstract
There are more than 3400 scientific herbaria in the world, with about 390 million specimens collected over the past 400 years, which document the Earth’s plant diversity. Information stored in the herbarium collections is not out of date over time and creates the basis for conducting and developing biodiversity research. The real breakthrough in the methodology of studying herbarium specimens over the past two decades has been the use of DNA technology, which has become possible due to the development of more advanced methods of DNA extraction, PCR analysis and sequencing. More often, herbarium specimens are becoming the object of comprehensive studies on systematics and phylogeny, changes in the genetic structure of populations in different historical periods and on the analysis of the gene pool and in studying the history of the introduction of plant species, using both classical botanical methods and involving modern methods of molecular genetics. At the same time, parallel studies of herbarium plants and pathogenic organisms preserved on them are carried out to study historical epiphytoties and the joint evolution of the pathogen-host system. Present review summarizes the recent results of molecular genetic studies of the herbarium collections.
Molecular genetic studies of herbarium specimens are associated with a number of methodological difficulties. Analysis of the literature indicates that DNA changes can be caused by various reasons and factors associated with both plant herbarization and with long-term storage of herbarium specimens. In a number of studies, the dependence of the quality of isolated DNA on the age of the herbarium specimen, as well as on the state of the stored plants, has been demonstrated. Moreover, the rate of fragmentation of nuclear and plastid DNA in herbarium plants may vary. The use of modified techniques aimed at the removal of oxidized polyphenols and the extraction of even small fragments allows to overcome the problems of drug contamination and the loss of significant fractions of the degraded DNA during isolation. The prospects for studies of herbarium collections using NGS analysis, which removes many methodological limitations, are considered.
Downloads
Metrics
References
All-Russian institute of plant protection (FSBSI VIZR). URL: http://vizrspb.ru/struktura-instituta/research/mikologii-i-fitopatologii/mikologicheskij-gerbarij-laboratorii-mikologii-i-fitopatologii-vizr.html (Accessed 07 July 2019).
Ames M., Spooner D. M. 2008. DNA from herbarium specimens settles a controversy about origins of the European potato. American Journal of Botany 95(2): 252–257. DOI: 10.3732/ajb.95.2.252
Bailey L. H. 1930. Three discussions in Cucurbitaceae. Gentes Herbarum 2: 175–186.
Bakker F. T. 2017. Herbarium genomics: skimming and plastomics from archival specimens. Webbia 72(1): 35–45. DOI:10.1080/00837792.2017.1313383
Bebber D. P., Carine M. A., Wood J. R. I., Wortley A. H., Harris D. J., Prance G. T., Davidse G., Paige J., Pennington T. D., Robson N. K. B., Scotland R. W. 2010. Herbaria are a major frontier for species discovery. Proceedings of the National Academy of Sciences 107(51): 22169–22171. DOI: 10.1073/pnas.1011841108
Bendich A. J. 1987. Why do chloroplasts and mitochondria contain so many copies of their genome? BioEssays 6(6): 279–282. DOI: 10.1002/bies.950060608
Besnard G., Christin P.-A., Male P.-J. G., Lhuillier E., Lauzeral C., Coissac E., Vorontsova M. S. 2014. From museums to genomics: old herbarium specimens shed light on a C3 to C4 transition. Journal of Experimental Botany 65(22): 6711–6721. DOI: 10.1093/jxb/eru395
Bieker V. C., Martin M. D. 2018. Implications and future prospects for evolutionary analyses of DNA in historical herbarium collections. Botany Letters 165(3–4): 409–418. DOI: 10.1080/23818107.2018.1458651
Бридсон Д., Форман Л. Гербарное дело: Справочное руководство. Русское издание. Кью: Королевский ботанический сад, 1995. 341 c.
Briggs A. W., Stenzel U., Johnson P. L. F., Green R. E., Kelso J., Prufer K., Meyer M., Krause J., Ronan M. T., Lachmann M., Paabo S. 2007. Patterns of damage in genomic DNA sequences from a Neandertal. Proceedings of the National Academy of Sciences 104(37): 14616–14621. DOI: 10.1073/pnas.0704665104
Brotherton P., Endicott P., Sanchez J. J., Beaumont M., Barnett R., Austin J., Cooper A. 2007. Novel high-resolution characterization of ancient DNA reveals C > U-type base modification events as the sole cause of post mortem miscoding lesions. Nucleic Acids Research 35(17): 5717–5728. DOI: 10.1093/nar/gkm588
Букасов С. М. Картофели Южной Америки и их селекционное использование // Приложение 58 к Трудам по прикладной ботанике, генетике и селекции, 1933. 153 с.
CBOL Plant Working Group. 2009. A DNA barcode for land plants. Proceedings of the National Academy of Sciences 106(31): 12794–12797. DOI: 10.1073/pnas.0905845106
Chase M. W., Hills H. H. 1991. Silica Gel: An Ideal Material for Field Preservation of Leaf Samples for DNA Studies. Taxon 40(2): 215–220. DOI: 10.2307/1222975
Chauvel B., Dessaint F., Cardinal-Legrand C., Bretagnolle F. 2006. The historical spread of Ambrosia artemisiifolia L. in France from herbarium records. Journal of Biogeography 33(4): 665–673. DOI: 10.1111/j.1365-2699.2005.01401.x
Chomicki G., Renner S. S. 2014. Watermelon origin solved with molecular phylogenetics including Linnaean material: another example of museomics. New Phytologist 205(2): 526–532. DOI: 10.1111/nph.13163
Correll D. S. 1962. The potato and its wild relatives. Contributions of the Texas Research Foundation, Botanical Studies. Texas Research Foundation, Renner, Texas, 606 pp.
Couvreur T. L. P., Helmstetter A. J., Koenen E. J. M., Bethune K., Brandao R. D., Little S. A., Erkens R. H. J. 2019. Phylogenomics of the Major Tropical Plant Family Annonaceae Using Targeted Enrichment of Nuclear Genes. Frontiers in Plant Science 9: 1941. DOI: 10.3389/fpls.2018.01941
Dabney J., Meyer M., Paabo S. 2013. Ancient DNA Damage. Cold Spring Harbor Perspectives in Biology 5(7): a012567. DOI: 10.1101/cshperspect.a012567
Davis C. C., Willis C. G., Connolly B., Kelly C., Ellison A. M. 2015. Herbarium records are reliable sources of phenological change driven by climate and provide novel insights into species’ phenological cueing mechanisms. American Journal of Botany 102(10): 1599–1609. DOI: 10.3732/ajb.1500237
De Castro O., Gargiulo R., Del Guacchio E., Caputo P., De Luca P. 2015. A molecular survey concerning the origin of Cyperus esculentus (Cyperaceae, Poales): two sides of the same coin (weed vs. crop). Annals of Botany 115(5): 733–745. DOI: 10.1093/aob/mcv001
Delisle F., Lavoie C., Jean M., Lachance D. 2003. Reconstructing the spread of invasive plants: taking into account biases associated with herbarium specimens. Journal of Biogeography 30(7): 1033–1042. DOI: 10.1046/j.1365-2699.2003.00897.x
De Vere N., Rich T. C. G., Ford C. R., Trinder S. A., Long C., Moore C. W., Satterthwaite D., Davies H., Allainguillaume J., Ronca S., Tatarinova T., Garbett H., Walker K., Wilkinson M. J. 2012. DNA barcoding the native flowering plants and conifers of Wales. PLoS ONE 7(6): e37945. DOI: 10.1371/journal.pone.0037945
Doyle J. J., Dickson E. E. 1987. Preservation of plant samples for DNA restriction endonuclease analysis. Taxon 36(4): 715–722. DOI: 10.2307/1221122
Drabkova L., Kirschner J., Vlcek C. 2002. Comparison of seven DNA extraction and amplification protocols in historical herbarium specimens of Juncaceae. Plant Molecular Biology Reporter 20(2): 161–175. DOI: 10.1007/bf02799431
Drabkova L. Z. 2013. DNA extraction from herbarium specimens. Molecular Plant Taxonomy 1115: 69–84. DOI: 10.1007/978-1-62703-767-9_4
Erkens R. H. J., Cross H., Maas J. W., Hoenselaar K., Chatrou L. W. 2008. Assessment of age and greenness of herbarium specimens as predictors for successful extraction and amplification of DNA. Blumea – Biodiversity, Evolution and Biogeography of Plants 53(2): 407–428. DOI: 10.3767/000651908x608052
Exposito-Alonso M., Becker C., Schuenemann V. J., Reiter E., Setzer C., Slovak R., Brachi B., Hagmann J., Grimm D. G., Chen J., Busch W., Bergelson J., Ness R. W., Krause J., Burbano H. A., Weigel D. 2018. The rate and potential relevance of new mutations in a colonizing plant lineage. PLoS Genet 14(2): e1007155. DOI: 10.1371/journal.pgen.1007155
Fazlioglu F. 2018. Tracing phenology of subarctic plants over the last century. Polish Polar Research 39(3): 413–424. DOI: 10.24425/118754
Gavrilenko T., Antonova O., Shuvalova A., Krylova E., Alpatyeva N., Spooner D., Novikova L. 2013. Genetic diversity and origin of cultivated potatoes based on plastid microsatellite polymorphism. Genetic Resources and Crop Evolution 60(7): 1997–2015. DOI: 10.1007/s10722-013-9968-1
Гавриленко Т. А., Чухина И. Г., Антонова О. Ю., Клименко Н. С., Новикова Л. Ю. О происхождении чилийского культурного картофеля (Solanum sect. Petota Dumort.) // Систематика и эволюционная морфология растений: Материалы конференции, посвященной 85-летию со дня рождения Тихомирова В. Н. (31 января – 3 февраля 2017 г., Москва). М., 2017. С. 136–140.
Гельтман Д. В. Российская наука и научные коллекции // Троицкий вариант – наука, 2012. № 22 (116). С. 3.
Гуреева И. И. Мировой гербарный фонд и его распределение // Бот. журн., 2010. Т. 95, № 11. С. 1658–1667.
Gussarova G., Allen G. A., Mikhaylova Y., McCormick L. J., Mirré V., Marr K. L., Hebda R. J., Brochmann C. 2015. Vicariance, long-distance dispersal, and regional extinction-recolonization dynamics explain the disjunct circumpolar distribution of the arctic-alpine plant Silene acaulis. American Journal of Botany 102(10): 1703–1720. DOI: 10.3732/ajb.1500072
Gutaker R. M., Reiter E., Furtwangler A., Schuenemann V. J., Burbano H. A. 2017. Extraction of ultrashort DNA molecules from herbarium specimens. BioTechniques 62(2): 76–79. DOI: 10.2144/000114517
Hansen A. J. 2006. Crosslinks rather than strand breaks determine access to ancient DNA sequences from frozen sediments. Genetics 173(2): 1175–1179. DOI: 10.1534/genetics.106.057349
Hardion L., Verlaque R., Vorontsova M. S., Combroux I., Chen C.-W., Takamizo T., Vila B. 2017. Does infraspecific taxonomy match species evolutionary history? A phylogeographic study of Arundo formosana (Poaceae). Botanical Journal of the Linnean Society 183(2): 236–249. DOI: 10.1093/botlinnean/bow006
Harris S. A. 1993. DNA analysis of tropical plant species: an assessment of different drying methods. Plant Systematics and Evolution 188(1–2): 57–64. DOI: 10.1007/bf00937835
Hart M. L., Forrest L. L., Nicholls J. A., Kidner C. A. 2016. Retrieval of hundreds of nuclear loci from herbarium specimens. Taxon 65(5): 1081–1092. DOI: 10.12705/655.9
Healey A., Furtado A., Cooper T., Henry R. J. 2014. Protocol: a simple method for extracting next-generation sequencing quality genomic DNA from recalcitrant plant species. Plant Methods 10(1): 21. DOI: 10.1186/1746-4811-10-21
Hosaka K. 2002. Distribution of the 241 bp deletion of chloroplast DNA in wild potato species. American Journal of Potato Research 79: 119–123. DOI: 10.1007/BF02881520
Hosaka K. 2004. Evolutionary pathway of T-type chloroplast DNA in potato. American Journal of Potato Research 81(2): 153–158. DOI: 10.1007/bf02853613
Index Herbariorum Rossicum. URL: https://www.binran.ru/resources/current/herbaria/herbariums/146-detail.html (Accessed 07 July 2019).
Inglis P. W., Marilia de Castro R. P., Resende L. V., Grattapaglia D. 2018. Fast and inexpensive protocols for consistent extraction of high quality DNA and RNA from challenging plant and fungal samples for highthroughput SNP genotyping and sequencing applications. PLoS ONE 13(10): e0206085. DOI: 10.1371/journal.pone.0206085
International Code of Nomenclature for Cultivated Plants, Ninth Edition (ICNCP). 2016. Eds. C. D. Brickell, C. Alexander, J. J. Cubey, J. C. David, M. H. A. Hoffman, A. C. Leslie, V. Malecot, X. Jin. Scripta Horticulturae 18: 190 pp.
Jones A. S., Mian A. M., Walker R. T. 1968. The alkaline degradation of deoxyribonucleic acid derivatives. Journal of the Chemical Society C: Organic 2042–2044. DOI: 10.1039/j39680002042
Jonsson H., Ginolhac A., Schubert M., Johnson P. L. F., Orlando L. 2013. mapDamage2.0: fast approximate Bayesian estimates of ancient DNA damage parameters. Bioinformatics 29(13): 1682–1684. DOI: 10.1093/bioinformatics/btt193
Юзепчук С. В. Новые виды рода Solanum из группы Tuberarium Dun. // Изв. АН СССР, сер. биол., 1937. № 2. С. 295–331.
Юзепчук С. В., Букасов С. М. К вопросу о происхождении картофеля // Труды Всесоюзного съезда по генетике, селекции, семеноводству и племенному животноводству. 1929. Т. 3. С. 593–611.
Kistler L. 2011. Ancient DNA Extraction from Plants. Methods in Molecular Biology 840: 71–79. DOI: 10.1007/978-1-61779-516-9_10
Krinitsina A. A., Sizova T. V., Zaika M. A., Speranskaya A. S., Sukhoruko A. P. 2015. A rapid and cost-effective method for DNA extraction from archival herbarium specimens. Biochemistry (Moscow) 80(11): 1478-1484. DOI: 10.1134/S0006297915110097
Lehtonen S., Christenhusz M. 2010. Historical herbarium specimens in plant molecular systematics — an example from the fern genus Lindsaea (Lindsaeaceae). Biologia 65(2): 204–208. DOI: 10.2478/s11756-010-0008-8
Lindahl T. 1993. Instability and decay of the primary structure of DNA. Nature 362(6422): 709–715. DOI: 10.1038/362709a0
Lindahl T., Andersson A. 1972. Rate of chain breakage at apurinic sites in double-stranded deoxyribonucleic acid. Biochemistry 11(19): 3618–3623. DOI: 10.1021/bi00769a019
Lindahl T., Nyberg B. 1972. Rate of depurination of native deoxyribonucleic acid. Biochemistry 11(19): 3610–3618. DOI: 10.1021/bi00769a018
Link V., Kousathanas A., Veeramah K., Sell C., Scheu A., Wegmann D. 2017. ATLAS: Analysis Tools for Low-depth and Ancient Samples. bioRxiv: 105346. DOI: 10.1101/105346
Lundstrom M., Forsberg N. E. G., Heimdahl J., Hagenblad J., Leino M. W. 2018. Genetic analyses of Scandinavian desiccated, charred and waterlogged remains of barley (Hordeum vulgare L.). Journal of Archaeological Science 22: 11–20. DOI: 10.1016/j.jasrep.2018.09.006
Magwe-Tindo J., Wieringa J. J., Sonke B., Zapfack L., Vigouroux Y., Couvreur T. L. P., Scarcelli N. 2018. Guinea yam (Dioscorea spp., Dioscoreaceae) wild relatives identified using whole plastome phylogenetic analyses. Taxon 67(5): 905–915. DOI: 10.12705/675.4
Malmstrom C. M., Shu R., Linton E. W., Newton L. A., Cook M. A. 2007. Barley yellow dwarf viruses (BYDVs) preserved in herbarium specimens illuminate historical disease ecology of invasive and native grasses. Journal of Ecology 95:1153–1166. DOI: 10.1111/j.1365-2745.2007.01307.x
Martin M. D., Cappellini E., Samaniego J. A., Zepeda M. L., Campos P. F., Seguin-Orlando A., Wales N., Orlando L., Ho S. Y. W., Dietrich F. S., Mieczkowski P. A., Heitman J., Willerslev E., Krogh A., Ristaino J. B., Gilbert M. T. P. 2013. Reconstructing genome evolution in historic samples of the Irish potato famine pathogen. Nature Communications 4(1): 2172. DOI: 10.1038/ncomms3172
Martin M. D., Vieira F. G., Ho S. Y. W., Wales N., Schubert M., Seguin-Orlando A., Ristaino J. B., Gilbert M. T. P. 2015. Genomic characterization of a South American Phytophthora hybrid mandates reassessment of the geographic origins of Phytophthora infestans. Molecular Biology and Evolution 33(2): 478–491. DOI: 10.1093/molbev/msv241
May K. J., Ristaino J. B. 2004. Identity of the mtDNA haplotype(s) of Phytophthora infestans in historical specimens from the Irish Potato Famine. Mycol. Res. 108(5): 471–479. DOI: 10.1017/s0953756204009876
Meineke E. K., Davies T. J., Daru B. H., Davis C. C. 2018. Biological collections for understanding biodiversity in the Anthropocene. Philosophical Transactions of the Royal Society B: Biological Sciences 374(1763): 20170386. DOI: 10.1098/rstb.2017.0386
O'Gorman D. T., Sholberg P. L., Stokes S. C., Ginns J. 2008. DNA sequence analysis of herbarium specimens facilitates the revival of Botrytis mali, a postharvest pathogen of apple. Mycologia 100(2): 227–235. DOI: 10.3852/mycologia.100.2.227
Olofsson J. K., Bianconi M., Besnard G., Dunning L. T., Lundgren M. R., Holota H., Vorontsova M. S., Hidalgo O., Leitch I. J., Nosil P., Osborne C. P., Christin, P.-A. 2016. Genome biogeography reveals the intraspecific spread of adaptive mutations for a complex trait. Molecular Ecology 25(24): 6107–6123. DOI: 10.1111/mec.13914
Omelchenko D. O., Speranskaya A. S., Ayginin A. A., Khafizov K., Krinitsina A. A., Fedotova A. V., Pozdyshev D. V., Shtratnikova V. Y., Kupriyanova E. V., Shipulin G. A., Logacheva M. D. 2019. Improved protocols of ITS1-based metabarcoding and their application in the analysis of plant-containing products. Genes 10(2): 12. DOI: 10.3390/genes10020122
Paabo S., Wilson A. C. 1991. Miocene DNA sequences – a dream come true? Current Biology 1(1): 45–46. DOI: 10.1016/0960-9822(91)90125-g
Peltzer A., Jager G., Herbig A., Seitz A., Kniep C., Krause J., Nieselt K. 2016. EAGER: efficient ancient genome reconstruction. Genome Biology 17: 60. DOI: 10.1186/s13059-016-0918-z
Primack D., Imbres C., Primack R. B., Miller-Rushing A. J., Del Tredici P. 2004. Herbarium specimens demonstrate earlier flowering times in response to warming in Boston. American Journal of Botany 91(8): 1260–1264. DOI: 10.3732/ajb.91.8.1260
Pyle M. M., Adams R. P. 1989. In situ preservation of DNA in plant specimens. Taxon 38(4): 576–581. DOI: 10.2307/1222632
Reape T. J., Molony E. M., McCabe P. F. 2008. Programmed cell death in plants: distinguishing between different modes. Journal of Experimental Botany 59(3): 435–444. DOI: 10.1093/jxb/erm258
Rogers S. O., Bendich A. J. 1985. Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues. Plant Molecular Biology 5(2): 69–76. DOI: 10.1007/bf00020088
Roldan-Arjona T., Ariza R. R. 2009. Repair and tolerance of oxidative DNA damage in plants. Mutation Research/Reviews in Mutation Research 681(2–3): 169–179. DOI: 10.1016/j.mrrev.2008.07.003
Roullier C., Benoit L., McKey D. B., Lebot V. 2013. Historical collections reveal patterns of diffusion of sweet potato in Oceania obscured by modern plant movements and recombination. Proceedings of the National Academy of Sciences 110(6): 2205–2210. DOI: 10.1073/pnas.1211049110
Saltonstall K. 2002. Cryptic invasion by a non-native genotype of the common reed, Phragmites australis, into North America. Proceedings of the National Academy of Sciences 99(4): 2445–2449. DOI: 10.1073/pnas.032477999
Sanchez Barreiro F., Vieira F. G., Martin M. D., Haile J., Gilbert M. T. P., Wales N. 2016. Characterizing restriction enzyme-associated loci in historic ragweed (Ambrosia artemisiifolia) voucher specimens using custom-designed RNA probes. Molecular Ecology Resources 17(2): 209–220. DOI: 10.1111/1755-0998.12610
Sarkinen T., Staats M., Richardson J. E., Cowan R. S., Bakker F. T. 2012. How to open the treasure chest? Optimising DNA extraction from herbarium specimens. PLoS ONE 7(8): e43808. DOI: 10.1371/journal.pone.0043808
Saville A. C., Martin M. D., Ristaino J. B. 2016. Historic late blight outbreaks caused by a widespread dominant lineage of Phytophthora infestans (Mont.) de Bary. PLOS ONE 11(12): e0168381. DOI: 10.1371/journal.pone.0168381
Savolainen V., Cuenoud P., Spichiger R., Martinez M. D. P., Crevecoeur M., Manen J.-F. 1995. The use of herbarium specimens in DNA phylogenetics: evaluation and improvement. Plant Systematics and Evolution 197(1–4): 87–98. DOI: 10.1007/bf00984634
Schubert M., Ermini L., Sarkissian C. D., Jonsson H., Ginolhac A., Schaefer R., Martin M. D., Fernández R., Kircher M., McCue M., Willerslev E., Orlando L. 2014. Characterization of ancient and modern genomes by SNP detection and phylogenomic and metagenomic analysis using PALEOMIX. Nature Protocols 9(5): 1056–1082. DOI: 10.1038/nprot.2014.063
Shapiro B., Hofreiter M. 2014. A paleogenomic perspective on evolution and gene function: new insights from ancient DNA. Science 343(6169): 1236573. DOI: 10.1126/science.1236573
Silva C., Besnard G., Piot A., Razanatsoa J., Oliveira R. P., Vorontsova M. S. 2016. Museomics resolve the systematics of an endangered grass lineage endemic to north-western Madagascar. Annals of Botany 119(3): 339–351. DOI: 10.1093/aob/mcw208
Sinitsyna T. A., Herden T., Friesen N. 2016. Dated phylogeny and biogeography of the Eurasian Allium section Rhizirideum (Amaryllidaceae). Plant Systematics and Evolution 302(9): 1311–1328. DOI: 10.1007/s00606-016-1333-3
Смекалова Т. Н., Багмет Л. В., Чухина И. Г. Гербарий ВИР им. Н. И. Вавилова (WIR) и его роль в решении проблем мобилизации, сохранения и изучения генетических ресурсов растений // Труды по прикладной ботанике, генетике и селекции, 2012. Т. 169. С. 180–192.
Sparks T. H., Carey P. D. 1995. The responses of species to climate over two centuries: an analysis of the Marsham phenological record, 1736–1947. The Journal of Ecology 83(2): 321–329. DOI: 10.2307/2261570
Spooner D. M., Ghislain M., Simon R., Jansky S. H., Gavrilenko T. 2014. Systematics, diversity, genetics, and evolution of wild and cultivated potatoes. The Botanical Review 80(4): 283–383. DOI: 10.1007/s12229-014-9146-y
Srinivasan M., Sedmak D., Jewell S. 2002. Effect of fixatives and tissue processing on the content and integrity of nucleic acids. The American Journal of Pathology 161(6): 1961–1971. DOI: 10.1016/s0002-9440(10)64472-0
Staats M., Cuenca A., Richardson J. E., Vrielink-van Ginkel R., Petersen G., Seberg O., Bakker F. T. 2011. DNA damage in plant herbarium tissue. PLoS ONE 6(12): e28448. DOI: 10.1371/journal.pone.0028448
Staats M., Erkens R. H. J., van de Vossenberg B., Wieringa J. J., Kraaijeveld K., Stielow B., Geml J., Richardson J. E., Bakker F. T. 2013. Genomic treasure troves: complete genome sequencing of herbarium and insect museum specimens. PLoS ONE 8(7): e69189. DOI: 10.1371/journal.pone.0069189
Telle S., Thines M. 2008. Amplification of cox2 (~620 bp) from 2 mg of up to 129 years old herbarium specimens, comparing 19 extraction methods and 15 polymerases. PLoS ONE 3(10): e3584. DOI: 10.1371/journal.pone.0003584
Thiers B. 2008+ [continuously updated]. Index Herbariorum: A global directory of public herbaria and associated staff. New York Botanical Garden's Virtual Herbarium. URL: http://sweetgum.nybg.org/science/ih (Accessed 07 July 2019).
Vascular Plants Herbarium of the Komarov Botanical Institute. URL: https://www.binran.ru/resources/current/herbaria/herbariums/136-detail.html (Accessed 07 July 2019).
Weiss C. L., Schuenemann V. J., Devos J., Shirsekar G., Reiter E., Gould B. A., Stinchcombe J. R., Krause J., Burbano H. A. 2016. Temporal patterns of damage and decay kinetics of DNA retrieved from plant herbarium specimens. Royal Society Open Science 3(6): 160239. DOI: 10.1098/rsos.160239
Wieringa J. J., Sosef M. S. M. 2011. The applicability of Relative Floristic Resemblance to evaluate the conservation value of protected areas. Plant Ecology and Evolution 144(3): 242–248. DOI: 10.5091/plecevo.2011.588
Yoshida K., Burbano H. A., Krause J., Thines M., Weigel D., Kamoun S. 2014. Mining herbaria for plant pathogen genomes: back to the future. PLoS Pathogens 10(4): e1004028. DOI: 10.1371/journal.ppat.1004028
Yoshida K., Sasaki E., Kamoun S. 2015. Computational analyses of ancient pathogen DNA from herbarium samples: challenges and prospects. Frontiers in Plant Science 6: 771. DOI: 10.3389/fpls.2015.00771
Yoshida K., Schuenemann V. J., Cano L. M., Pais M., Mishra B., Sharma R., Lanz C., Martin F. N., Kamoun S., Krause J., Thines M., Weigel D., Burbano H. A. 2013. The rise and fall of the Phytophthora infestans lineage that triggered the Irish potato famine. eLife 2: e01108. DOI: 10.7554/elife.00731
Zeng C.-X., Hollingsworth P. M., Yang J., He Z.-S., Zhang Z.-R., Li D.-Z., Yang J.-B. 2018. Genome skimming herbarium specimens for DNA barcoding and phylogenomics. Plant Methods 14(1): 43. DOI: 10.1186/s13007-018-0300-0
Звягин А. С. Выделение ДНК из гербарных листьев Vitis vinifera L. // Научный журнал КубГАУ, 2010. № 58(04). С. 336–347.
Turczaninowia is a golden publisher, as we allow self-archiving, but most importantly we are fully transparent about your rights.
Authors may present and discuss their findings ahead of publication: at biological or scientific conferences, on preprint servers, in public databases, and in blogs, wikis, tweets, and other informal communication channels.
Turczaninowia allows authors to deposit manuscripts (currently under review or those for intended submission to Turczaninowia) in non-commercial, pre-print servers such as ArXiv.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).