Полифилия носителей хлоропластов: где располагаются растения на древе жизни?

  • Мария Сергеевна Раутиан Санкт-Петербургский университет Email: mrautian@mail.ru
  • Виктория Семеновна Шнеер Ботанический институт им. В. Л. Комарова РАН Email: avrodionov@mail.ru
  • Александр Викентьевич Родионов Ботанический институт им. В. Л. Комарова РАН Email: avrodionov@mail.ru
Ключевые слова: макрофилогения, первичные и вторичные хлоропласты, симбиогенез, Eucaryota, Procaryota

Аннотация

Рассмотрены современные данные о макрофилогении бактерий, архей и эукариот, и обсуждается вопрос о положении на «древе жизни» эукариотических организмов, в клетках которых есть хлоропласты. Показано, что эукариоты, несущие окруженный двойной мембраной хлоропласт, происходящий непосредственно из цианобактерии (такой хлоропласт называется первичным), располагаются на двух удаленных друг от друга ветвях филогенетического древа. Одна из этих ветвей, называемая супергруппой Archaeplastida или царством Plantae, представлена наземными многоклеточными растениями, а также зелеными, красными и глаукофитовыми водорослями. Амебы из рода Paulinella, на филогенетическом древе эукариот располагающиеся среди видов супергруппы (инфрацарства) Rhizaria, приобрели первичный хлоропласт в результате независимого акта симбиогенеза, имевшего место относительно недавно – 90–140 млн лет назад. Хлоропласты простейших, окруженные тремя мембранами, появились в результате симбиоза между эукариотической клеткой и эукариотическими же зелеными или красными водорослями, уже обладавшими первичным хлоропластом. Вторичные симбионты, имеющие хлоропласт, происходящий от зеленой водоросли, возникали в эволюции по меньшей мере два раза: в линиях эвглен и амеб-хлорарахниофитов зеленые водоросли, превратившиеся в их хлоропласты, также разные. Эукариоты, обладающие вторичными хлоропластами, происходящими от красной водоросли, широко распространены в природе – они есть у половины Protozoa, представителей всех клад, кроме Amoebozoa и Opisthoconta. Предполагается, что вторичный симбиоз с красной водорослью мог возникнуть у общего предка всех этих групп, после чего имели место многочисленные акты потери и приобретения вторичных хлоропластов. Третичные хлоропласты, окруженные четырьмя мембранами, есть результат симбиоза между эукариотической клеткой и клеткой со вторичным хлоропластом.

Скачивания

Данные скачивания пока недоступны.

Metrics

Загрузка метрик ...

Литература

Adl S. M., Simpson A. G. B., Farmer M. A., Andersen R. A., Anderson O. R., Barta J. R., Bowser S. S., Brugerolle G., Fensome R. A., Fredericq S., James T. Y., Karpov S., Kugrens P., Krug J., Lane C. E., Lewis L. A., Lodge J., Lynn D. H., Mann D. G., McCourt R. M., Mendoza L., Moestrup Ø., Mozley-Standridge S. E., Nerad T. A., Shearer C. A., Smirnov A. V., Spiegel F. W., Taylor M. F. J. R. 2005. The new higher level classification of eukaryotes with emphasis on the taxonomy of protists. J. Eukaryot. Microbiol. 52: 399–451. DOI: 10.1111/j.1550-7408.2005.00053.x
Akhmanova A., Voncken F., van Alen T., van Hoek A., Boxma B., Vogels, G., Veenhuls M., Hackstein J. H. 1998. A hydrogenosome with genome. Nature 396: 527–528.
Akıl C., Robinson R. C. 2018. Genomes of Asgard archaea encode profilins that regulate actin. Nature 562: 439–444.
Антонов А. С. Геносистематика растений. М.: ИКЦ Академкнига, 2006. 294 с.
Антонов А. С., Белозерский А. Н. Сравнительное изучение нуклеотидного состава дезоксирибонуклеиновых кислот некоторых позвоночных и беспозвоночных животных // Доклады АН СССР, 1961. Т. 138. С. 1216–1220.
Battistuzzi F. U., Feijao A., Hedges S. B. 2004. A genomic timescale of prokaryote evolution: insights into the origin of methanogenesis, phototrophy, and the colonization of land. BMC evolutionary biology 4(1): 44. DOI: 10.1186/1471-2148-4-44
Bengtson S., Sallstedt T., Belivanova V., Whitehouse M. 2017. Three-dimensional preservation of cellular and subcellular structures suggests 1.6 billion-year-old crown-group red algae. PLoS Biol. 15: e2000735.
Bhattacharya D., Helmchen T., Melkonian M. 1995. Molecular evolutionary analyses of nuclear-encoded small subunit ribosomal RNA identify an independent rhizopod lineage containing the Euglyphina and the Chlorarachniophyta. J. Eukaryot. Microbiol. 42: 65–69. DOI: 10.1111/j.1550-7408.1995.tb01541.x
Блохина И. Н., Леванова Г. Ф. Геносистематика бактерий. М.: Наука, 1976. 151 с.
Bogorad L. 2008. Evolution of early eukaryotic cells: genomes, proteomes, and compartments. Photosynthesis Research 95: 11–21.
Bonen L., Cunningham R. S., Gray M. W., Doolittle W. F. 1977. Wheat embryo mitochondrial 18S ribosomal RNA: evidence for its prokaryotic nature. Nucl. Acids Res. 4(3): 663–671.
Burki F. 2014. The eukaryotic tree of life from global phylogenetic perspective. Cold Spring Harb. Perspect. Biol. 2014; 6:a016147.
Cavalier-Smith T. 1983. A 6 kingdom classification and a unified phylogeny. In: Endocytobiology II. Eds. W. Schwemmler, H. E. A. Schenk. De Gruyter, Berlin, 1027–1034 pp.
Cavalier-Smith T. 1999. Principles of protein and lipid targeting in secondary symbiogenesis: euglenoid, dinoflagellate, and sporozoan plastid origins and the eukaryote family tree. J. Eukaryot. Microbiol. 46: 347–366. DOI: 10.1111/j.1550-7408.1999.tb04614.x
Cavalier-Smith T. 2004. Chromalveolate diversity and cell megaevolution: interplay of membranes, genomes and cytoskeleton. In: Organelles, genomes and eukaryotic evolution. Eds. R. P. Hirt, D. Horner. UK: Taylor and Francis, London, 71–103 pp.
Chatton E. 1925. Pansporella perplexa. Réflexions sur la biologie et la phylogénie des protozoaires. Ann. Sci. Nat. Zool. 10e serie 7: 1–84.
Copeland H. F. 1938. The kingdoms of organisms. The Quarterly Review of Biology 13(4): 383–420.
de Vries J., Gould S. B. 2018. The monoplastidic bottleneck in algae and plant evolution. J. Cell Sci. 131(2): jcs203414.
Delaye L., Valadez-Cano C., Perez-Zamorano B. 2016. How really ancient is Paulinella chromatophora? PLoS Curr. Tree. Life. DOI: 10.1371/currents.tol.e68a099364bb1a1e129a17b4e06b0c6b
Делоне Л. Н. Сравнительно-кариологическое исследование нескольких видов Muscari Mill. // Записки Киевского Общества Естествоиспытателей, 1915. Т. 25. С. 33–64.
Dorrell R. G., Smith A. G. 2011. Do red and green make brown? Perspectives on plastid acquisitions within Chromalveolates. Eukaryotic Cell. 10: 856–868.
Энгельс Ф. Анти-Дюринг. М., 1955. С. 77.
Fitch W. M., Margoliash E. 1967. Construction of phylogenetic trees. Science 155: 279–284.
Gibson T. M., Shih P. M., Cumming V. M., Fischer W. W., Crockford P. W., Hodgskiss M. S. W., Wörndle S., Creaser R. A., Rainbird R. H., Skulski T., Halverson G. P. 2018. Precise age of Bangiomorpha pubescens dates the origin of eukaryotic photosynthesis. Geology 46(2): 135–138.
Graham L. E., Cook M. E., Busse J. S. 2000. The origin of plants: Body plan changes contributing to a major evolutionary radiation. Proc. Natl. Acad. Sci. USA 97(9): 4535–4540. DOI: 10.1073/pnas.97.9.4535
Jacq B. Sequence homologies between eukaryotic 5.8S rRNA and the 5′ end of prokaryotic 23S rRNA: evidences for a common evolutionary origin. Nucl. Acids Res. 9: 2913–2932. DOI: 10.1093/nar/9.12.2913
Haeckel E. 1866. Generelle Morphologie der Organismen. 2 Bände. Berlin, 462 pp.
Haeckel E. 1904. The Wonders of Life. Translated by Joseph McCabe, New York and London, 501 pp.
Horiike T., Hamada K., Shinozawa T. 2002. Origin of eukaryotic cell nuclei by symbiosis of Archaea in Bacteria supported by the newly clarified origin of functional genes. Genes & Genetic Systems 77(5): 369–376.
Keeling P. J. 2010. The endosymbiotic origin, diversification and fate of plastids. Phyl. Trans. R. Soc. B. 365: 729–748.
Koonin E. V. 2010. The origin and early evolution of eukaryotes in the light of phylogenomics. Genome Biol. 11: 209. URL: http://genomebiology.com/2010/11/5/209
Кунин Е. В. Логика случая. О природе и происхождении биологической эволюции. М.: Цетрполиграф, 527 с.
Козо-Полянский Б. Новый принцип биологии. Очерк теории симбиогенеза. Л.-М.: Изд-во Пучина, 1924. 147 с.
Lake J. A., Henderson E., Oakes M., Clark M. W. 1984. Eocytes: a new ribosome structure indicates a kingdom with a close relationship to eukaryotes. Proc. Natl Acad. Sci. USA 81: 3786–3790.
Левицкий Г. А., Кузьмина Н. Е. Кариологический метод в систематике и филогенетике рода Festuca (подрод Eu-Festuca) // Тр. по прикл. бот., ген. и селекции, 1927. Т. 17, № 3. С. 3–36.
Lhee D., Ha J.-S., Kim S., Park M. G., Bhattacharya D., Yoon H. S. 2019. Evolutionary dynamics of the chromatophore genome in three photosynthetic Paulinella species. Scientific Reports 9: 2560. DOI: 10.1038/s41598-019-38621-8
Linnaei C. 1989. Philosophia Botanica. Nauka, Mosquae. 453 p.
Любарский Г. Ю. Рождение науки. Аналитическая морфология, классификационная система, научный метод. М.: Языки славянской культуры, 2015. 192 с.
MacLeod F., Kindler G. S., Wong H. L., Chen, R., Burns, B. P. 2019. Asgard archaea: diversity, function, and evolutionary implications in a range of microbiomes. AIMS Microbiology 5(1): 48–61. DOI: 10.3934/microbiol.2019.1.48.
Martin W., Müller M. 1998. The hydrogen hypothesis for the first eukaryote. Nature 392: 37–41. DOI: 10.1038/32096
Mereschkowsky C. 1905. Über Natur und Ursprung der Chromatophoren im Pflanzenreiche. Biol. Centralbl. 25: 593–604.
Mereschkowsky C. 1910. Theorie der zwei Plasmaarten als Grundlage der Symbiogenesis, einer neuen Lehre von der Entstehung der Organismen. Biol. Centralbl. 30: 353–442.
Müller M. 1993. The hydrogenosome. J. General Microbiol. 139: 2879–2889.
Nass M. M., Nass S. 1963. Intramitochondrial fibers with DNA characteristics: I. Fixation and electron staining reactions. J. Cell Biol. 19(3): 593–611.
Nozaki H., Iseki M., Hasegawa M. et al. 2007. Phylogeny of primary photosynthetic eukaryotes as deduced from slowly evolving nuclear genes. Molecular Biology and Evolution 24(8):1592–1595.
Parfrey L. W., Lahr D. J. G., Knoll A. H., Katz L. A. 2011. Estimating the timing of early eukaryotic diversification with multigene molecular clocks. Proc. Natl. Acad. Sci. 108: 13624–13629.
Павлинов И. Я. Номенклатура в систематике. История, теория, практика. М.: Товарищество научных изданий КМК, 2011. 439 с.
Павлинов И. Я., Любарский Г. Ю. Биологическая систематика: история идей. М., Товарищество научных изданий КМК, 2011. 678 с.
Ponce-Toledo R. I., Deschamps P., López-Garcia P., Zivanovic Y., Benzerara K., Moreira D. 2017. An early-branching freshwater Cyanobacterium at the origin of plastids. Current Biology 2: 386–391. DOI: 10.1016/j.cub.2016.11.056.
Ris H., Plaut W. 1962. Ultrastructure of DNA-containing areas in the chloroplast of Chlamydomonas. J. Cell Biol. 13(3): 383–391.
Rodrıguez-Ezpeleta N., Brinkmann H., Burey S. C., Roure B., Burger G., Löffelhardt W., Bohnert H. J., Philippe H., Lang B. F. 2005. Monophyly of primary photosynthetic eukaryotes: green plants, red algae, and glaucophytes. Curr. Biol. 15: 1325–1330.
Roger A. J., Munoz-Gomez S. A., Kamikawa R. 2017. The origin and diversification of mitochondria. Current Biology 27(21): R1177–R1192.
Ruggiero M. A., Gordon D. P., Orrell T. M., Bailly N., Bourgoin T., Brusca R. C., Cavalier-Smith T., Guiry M. D., Kirk P. M. 2015a. A higher level classification of all living organisms. PloS one 10(4): e0119248.
Ruggiero M. A., Gordon D. P., Orrell T. M., Bailly N., Bourgoin T., Brusca R. C., Cavalier-Smith T., Guiry M. D., Kirk P. M. 2015b. Correction: A higher level classification of all living organisms. Plos one 10(6): e0130114.
Sanchez-Baracaldo P., Raven J., Pisani D., Knoll A. H. 2017. Early photosynthetic eukaryotes inhabited low-salinity habitats. Proc Natl Acad Sci USA 114(37): E7737–E7745. DOI: 10.1073/pnas.1620089114
Sapp J. 2005. The Prokaryote-Eukaryote dichotomy: meaning and mythology. Microbiology and Molecular Biology Reviews 69(2): 292–305. DOI: 10.1128/MMBR.69.2.292-305.2005.
Соколова Ю. Я., Снигиревская Е. С., Комиссарчик Я. Ю. Аппарат Гольджи паразитических простейших // Цитология, 2007. Т. 49, № 3. С. 163–181.
Spang A., Saw J. H., Jørgensen S. L., Zaremba-Niedzwiedzka K., Martijn J., Lind A. E., van Eijk R., Schleper C., Guy L., Ettema T. J. 2015. Complex archaea that bridge the gap between prokaryotes and eukaryotes. Nature 521(7551): 173–179.
Stanier R. Y., van Niel C. 1962. The concept of a bacterium. Archives of Microbiology 42: 17–35.
Traub H. P. 1963. Revision of "The Phyla of Organisms". Plant Life 19: 160.
Traub H. P. 1975. Proposals for upper ranks of living things. Taxon 24: 293–295.
Van der Giezen M. 2012. Mitochondria and the rice of Eukaryotes. BioScience 61: 594–601.
Whittaker R. H., Margulis, L. 1978. Protist classification and the kingdoms of organisms. Biosystems 10: 3–18.
Woese C. R., Fox G. E. 1977. Phylogenetic structure of the prokaryotic domain: The primary kingdoms. Proc. Natl Acad. Sci. USA 74: 5088–5090.
Woese C. R., Kandler O., Wheelis M. L. 1990. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci USA 87(12): 4576–4579. DOI: 10.1073/pnas.87.12.4576
Yoon H. S., Hackett J. D., Ciniglia C. Pinto G., Bhattacharya D. 2004. A molecular timeline for the origin of photosynthetic eukaryotes. Mol. Biol. Evol. 21: 809–818. DOI: 10.1093/mobbed/msh075
Zaremba-Niedzwiedzka K., Caceres E.F., Saw J. H., Bäckström D., Juzokaite L., Vancaester E., Seitz K. W., Anantharaman K., Starnawski P., Kjeldsen K. U., Stott M. B., Nunoura T., Banfield J. F., Schramm A., Baker B. J., Spang A., Ettema T. J. G. 2017. Asgard archaea illuminate the origin of eukaryotic cellular complexity. Nature 541: 353–358.
Zelenin A. V., Rodionov A. V., Bolsheva N. L., Badaeva E. D., Muravenko O. V. 2016. Genome: origins and evolution of the term. Molecular Biology 50(4): 542–550.
Zhang R., Nowack E. C., Price D. C. et al. 2017. Impact of light intensity and quality on chromatophore and nuclear gene expression in Paulinella chromatophora, an amoeba with nascent photosynthetic organelles. Plant J. 90: 221–234. DOI: 10.1111/tpj.13488
Опубликован
2019-06-17
Как цитировать
Раутиан М. С., Шнеер В. С., Родионов А. В. Полифилия носителей хлоропластов: где располагаются растения на древе жизни? // Turczaninowia, 2019. Т. 22, № 2. С. 121-132 DOI: 10.14258/turczaninowia.22.2.7. URL: http://turczaninowia.asu.ru/article/view/5788.
Раздел
Научные статьи