Sequencing and GO annotation of transcriptome of the cell and tissue in vitro culture of Rumex acetosa

  • M. V. Skaptsov South Siberian Botanical Garden, Altai State University Email: mr.skaptsov@mail.ru
  • M. G. Kutsev South Siberian Botanical Garden, Altai State University Email: m_kucev@mail.ru
  • M. A. Krasnoborodkina South Siberian Botanical Garden, Altai State University Email: mr.skaptsov@mail.ru
  • S. V. Smirnov South Siberian Botanical Garden, Altai State University Email: serg_sm_@mail.ru
  • O. V. Uvarova South Siberian Botanical Garden, Altai State University Email: uwarowa@mail.ru
  • T. A. Sinitsyna South Siberian Botanical Garden, Altai State University Email: t.sinitsyna@list.ru
  • A. A. Kechaykin South Siberian Botanical Garden, Altai State University Email: alekseikechaikin@mail.ru
  • A. I. Shmakov South Siberian Botanical Garden, Altai State University Email: alex_shmakov@mail.ru
Keywords: cDNA, culture in vitro, RNA, Rumex acetosa, transcriptome

Abstract

The paper presents sequencing data, de novo assemblies and a functional annotation of transcriptome of the callus culture of Rumex acetosa L. The callus culture was maintained for twelve months in the presence of benzyladenine and naphthylacetic acid. The cDNA library was prepared using the adapter ligation method according to the standard protocol of the sequencer manufacturer. In the work, the “shotgun” technique was not used, since only the spectrum of the expression genes was required. In total it was obtained 74067 reads with a total 25,110,194 bp nucleotides. 10169 contigs were obtained in the resulting assembly with a medium length of 339 bp. Based on the sequence homology of total contigs in the category of biological processes for transcriptome callus, “cell metabolism”, “nitrogen metabolism”, “biosynthetic processes” and “metabolic processes of organic substances” dominated. In the category of molecular function, “transferase activity”, “heterocyclic compounds binding activity” and “binding the ions” dominated. In the category of the cellular component, the “macromolecular complex”, “organelles”, “cell”, “membrane” dominated. In comparison with the control transcriptome, the result obtained by us was distinguished by a reduced variety of GO subcategories. Variations in the expression of gene groups may proof epigenetic variation, which we have identified by GO annotations and transcriptome analysis. The mRNA pool is less diverse in callus lines, which, apparently, is associated with reduced specialization and dedifferentiation of cells. For the mRNA pool of R. acetosa cell culture, a high content of transcripts of retroelements, such as Copia and Gypsy, was noted. Similar results indicate a possible stress response of in vitro culture of cells and tissues of R. acetosa and high genome variability.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Butenko R. G. 1999. Biologiya kletok vysshikh rasteniy in vitro i biotekhnologii na ikh osnove [Biology of cells of higher plants in vitro and biotechnology based on them]. FBK-Press, Moscow, 160 pp. [In Russian]. (Бутенко Р. Г. Биология клеток высших растений in vitro и биотехнологии на их основе. М.: ФБК-ПРЕСС, 1999. 160 с.).

Clegg M. T., Durbin M. L. 2000. Flower color variation: a model for the experimental study of evolution. Proc. Natl. Acad. Sci. USA 97: 7016–7023. DOI: 10.1073/pnas.97.13.7016

Erst A. A., Zvyagina N. S., Novikova T. I., Dorogina O. V. 2015. Clonal micropropagation of a rare species Hedysarum theinum Krasnob. (Fabaceae) and assessment of the genetic stability of regenerated plants using ISSR markers. Russ. J. Genet. 51: 158–162. DOI: 10.1134/S1022795415020076.

Evrensel C., Yilmaz S., Temel A., Gozukirmizi N. 2011. Variations in BARE – 1 insertion patterns in barley callus cultures. Genet. Mol. Res. 10, 2: 980–987. DOI: 10.4238/vol10-2gmr965

Hofmann N. E., Raja R., Nelson R. L, Korban S. 2004. Mutagenesis of embryogenic cultures of soybean and detecting polymorphisms using RAPD markers. Biol. Plant. 48, 2: 173–177. DOI: 10.1023/B:BIOP.0000033441.46242.94.

Jin F., Hu L., Yuan D., Xu J., Gao W., He L., Yang X., Zhang X. 2014. Comparative transcriptome analysis between somatic embryos (SEs) and zygotic embryos in cotton: evidence for stress response functions in SE development. Plant Biotechnol. J. 12: 161–173. DOI: 10.1111/pbi.12123.

Khan I. A., Dahot M. U., Bibi N. S. S., Khatri A. 2008. Genetic variability in plantlets derived from callus culture in sugarcane. Pak. J. Bot. 40: 554–564.

Kobayashi S., Goto-Yamamoto N., Hirochika H. 2004. Retrotransposon – induced mutations in grape skin color. Science 304: 982. DOI: 10.1126/science.1095011

Li Q., Zhang S., Wang J. 2014. Transcriptome analysis of callus from Picea balfouriana. BMC Genomics 15: 553. DOI: 10.1186/1471-2164-15-553

Machczyńska J., Zimny J., Bednarek P. T. 2015. Tissue culture – induced genetic and epigenetic variation in triticale (× Triticosecale sP. Wittmack ex A. Camus 1927) regenerants. Plant Mol. Biol. 89, 3: 279–292. DOI: 10.1007/s11103-015-0368-0

Orłowska R., Machczyńska J., Oleszczuk S., Zimny J., Bednarek P. T. 2016. DNA methylation changes and TE activity induced in tissue cultures of barley (Hordeum vulgare L.). J. Biol. Res. (Thessalon) 23: 19. DOI: 10.1186/s40709-016-0056-5

Park K. I., Ishikawa N., Morita Y., Choi J. D., Hoshino A., Iida S. 2007. A bHLH regulatory gene in the common morning glory, Ipomoea purpurea, controls anthocyanin biosynthesis in flowers, proanthocyanidin and phytomelanin pigmentation in seeds, and seed trichome formation. Plant J. 49, 4: 641–654. DOI: 10.1111/j.1365-313X.2006.02988.x

Solov’eva A. I., Vysotskaya O. N., Dolgikh Yu. I. 2016. Effect of dehydration duration of apices on characteristics of in vitro plants of Fragaria vesca after cryopreservation. Russ. J. Plant Physiol. 63: 243–251. DOI: 10.1134/S1021443716020138

Spiridonova E. V., Adnofi D. M., Andreev O., Kunakh V. A. 2007. Dynamics of changes in the genome of callus tissues of Rauwolfia serpentina upon a switch to conditions of submerged cultivation. Cytol. Genet. 42, 2: 101–106. DOI: 10.1007/s11956-008-2006-0

Stanke M., Morgenstern B. 2005. AUGUSTUS: a web server for gene prediction in eukaryotes that allows user-defined constraints. Nucleic Acids Res. 33: 465–467. DOI: 10.1093/nar/gki458

Temel A., Gozukirmizi N. 2013. Analysis of retrotransposition and DNA methylation in barley callus culture. Acta Biol. Hung. 64, 1: 86–95. DOI: 10.1556/ABiol.64.2013.1.8

Wessler S. R. 1996. Turned on by stress. Plant retrotransposons. Curr. Biol. 6, 8: 959–961.

Yilmaz S., Gozukirmizi N. 2013. Variation of retrotransposon movement in callus culture and regenerated shoots of barley. Biotech. Biotechnol. Equip. 27, 6: 4227–4230. DOI: 10.5504/BBEQ.2013.0076

Published
2017-12-01
How to Cite
Skaptsov M. V., Kutsev M. G., Krasnoborodkina M. A., Smirnov S. V., Uvarova O. V., Sinitsyna T. A., Kechaykin A. A., Shmakov A. I. Sequencing and GO annotation of transcriptome of the cell and tissue in vitro culture of Rumex acetosa // Turczaninowia, 2017. Vol. 20, № 4. P. 119-124. URL: http://turczaninowia.asu.ru/article/view/3512.
Section
Research technique