Geometric morphometrics and phylogenetic analysis of Delphinium taxa from south of Russia

UDC 582.675.1:58.087+575.86(470)

Keywords: Bayesian analysis, canonical variate analysis, Delphinium, geometric morphometrics, targeted sequencing

Abstract

The leaf blade’s shape of 665 samples of 18 taxa from the genus Delphinium was analyzed using geometric morphometrics method. Within the subgenus Delphinastrum, D. elatum and, to a lesser extent, D. uralense were relatively well separated by canonical analysis, while D. litwinowii, D. pubiflorum, D. duhmbergii, and D. subcuneatumwere not actually separated. Within the subgenus Oligophyllon, D. caucasicum was well separated by this method. The scatter clouds of D. freynii + D. puniceum + D. sergii on the one hand, and D. fedorovii + D. gelmetzicum on the other hand, also separated. D. arcuatum, D. bracteosum, D. crispulum, D. flexuosum, and D. mariae did not separate from each other. The nature of such separation of species groups observed in the space of canonical variables and their relative proximity to each other can be associated with the habitat similarity of their populations driven by ecological or geographical conditions, as well as the influence of hybridization processes in the zone of secondary contact of species. The differences in leaf blade’s shape are mainly related to the width of the segments, the lengths of the central segment of the middle lobe and the undissected part of the leaf blade, the degree of its dissection, the shape of the base and the distance between the lower lobes. Based on the results of DNA sequencing of the intergenic transcribed spacer ITS2, the taxonomic independence of D. puniceum, D. macropogon, D. mariae, D. samurense, and D. pubiflorum is beyond any doubt. The synonymy of D. freynii and D. sergii is supported, with the priority name of D. schmalhausenii. D. cuneatum, D. subcuneatum, D. duhmbergii, and D. litwinowii should be considered as synonyms with the priority name of D. cuneatum. The taxonomic status of D. dictyocarpum, D. elatum, and D. uralense needs further clarification. This is probably related to their easy hybridization with D. cuneatum in sympatric populations within the overlapping areas. Delphinium arcuatum, D. bracteosum, D. caucasicum, D. crispulum, D. elisabethae, D. fedorovii, D. flexuosum, D. gelmetzicum, and D. speciosum are poorly separated, which can also be associated with hybridization processes. They need to be studied in more detail.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Blattner F. R. 1999. Direct amplification of the entire ITS region from poorly preserved plant material using recombinant PCR. Biotechniques 27(6): 1180−1186. DOI: 10.2144/99276st04
Chen Y., Jabbour F., Novikov A., Wang W., Gerber S. 2018. A study of floral shape variation in Delphinieae (Ranunculaceae) using geometric morphometrics on herbarium specimens. Bot. Lett. 165(3–4): 368–376. DOI: 10.1080/23818107.2018.1427145
Chitwood D. H., Otoni W. C. 2017. Morphometric analysis of Passiflora leaves: the relationship between landmarks of the vasculature and elliptical Fourier descriptors of the blade. GigaScience 6(1): 1–13. DOI: 10.1093/gigascience/giw008
Conesa M. À., Mus M., Roselló J. A. 2012. Leaf shape variation and taxonomic boundaries in two sympatric rupicolous species of Helichrysum (Asteraceae: Gnaphalieae), assessed by linear measurements and geometric morphometry. Biol. J. Linn. Soc. 106(3): 498–513. DOI: 10.1111/j.1095-8312.2012.01889.x
Darriba D., Taboada G., Doallo R., Posada D. 2012. jModelTest 2: more models, new heuristics and parallel computing. Nat. Methods 9: 772. DOI: 10.1038/nmeth.2109
Эбель А. Л. Новые таксоны рода Delphinium (Ranunculaceae) с Алтая // Сист. зам. Герб. Томск. ун-та, 2006. T. 96. С. 14–21.
Эбель А. Л. Новый вид рода Delphinium L. (Ranunculaceae) из Южной Сибири // Сист. зам. Герб. Томск. ун-та, 2007. T. 98. С. 13–16.
Фёдоров Н. И. Род Delphinium L. на Южном Урале: экология, популяционная структура и биохимические особенности. Уфа: Гилем, 2003. 149 с.
Grant V. 1981. Plant speciation. New York: Columbia Univ. Press. 563 pр.
Hall T. A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41: 95–98. DOI: 10.14601/Phytopathol_Mediterr-14998u1.29
Hammer Ø., Harper D. A. T., Ryan P. D. 2001. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4(1): 1–9.
Hodač L., Barke B. H., Hörandl E. 2018. Mendelian segregation of leaf phenotypes in experimental F2 hybrids elucidates origin of morphological diversity of the apomictic Ranunculus auricomus complex. Taxon 67(6): 1082–1092. DOI: 10.12705/676.6
Jabbour F., Renner S. S. 2011. Consolida and Aconitella are an annual clade of Delphinium (Ranunculaceae) that diversified in the Mediterranean basin and the Irano-Turanian region. Taxon 60(4): 1029–1040. DOI: 10.1002/tax.604007
Jabbour F., Renner S. S. 2012. A phylogeny of Delphinieae (Ranunculaceae) shows that Aconitum is nested within Delphinium and that Late Miocene transitions to long life cycles in the Himalayas and Southwest China coincide with bursts in diversification. Mol. Phylogenet. Evol. 62(3): 928–942. DOI: 10.1016/j.ympev.2011.12.005
Камелин Р. В. Особенности видообразования у цветковых растений // Труды Зоологического института РАН, 2009. Т. 313, № S1. С. 141–149.
Karbstein K., Tomasello S., Hodač L., Dunkel F. G., Daubert M., Hörandl E. 2020. Phylogenomics supported by geometric morphometrics reveals delimitation of sexual species within the polyploid apomictic Ranunculus auricomus complex (Ranunculaceae). Taxon 69: 1191−1220. DOI: 10.1002/tax.12365
Kashin A. S., Kritskaya T. A., Bogoslov A. V., Shilova I. V., Parkhomenko A. S., Ishmuratova M. M., Fedorov N. I. 2021. Taxonomic revision of Delphinium (Ranunculaceae) in the South-East of European Russia. Plant Syst. Evol. 307:59. DOI: 10.1007/s00606-021-01783-y
Klingenberg C. P. 2011. MorphoJ: an integrated software package for geometric morphometrics. Mol. Ecol. Resour. 11(2): 353–357. DOI: 10.1111/j.1755-0998.2010.02924.x
Klingenberg C. P. 2022. Methods for studying allometry in geometric morphometrics: a comparison of performance. Evol. Ecol. 36: 439–470. DOI: 10.1007/s10682-022-10170-z
Koontz Ja. A., Soltis P. S., Soltis D. E. 2009. Using phylogeny reconstruction to test hypotheses of hybrid origin in Delphinium section Diedropetala (Ranunculaceae). Systematic Botany 29(2): 345–357.
Курбатский В. И. Новый вид Delphinium L. (Ranunculaceae) из Средней Сибири // Сист. зам. Герб. Томск. ун-та, 2017. Т. 115. С. 23–27. DOI: 10.17223/20764103.115.4.
Луферов А. Н. Новый вид рода Delphinium L. (Ranunculaceae) из Армении // Новости сист. высш. раст., 2012. Т. 43. С. 57–60.
Малютин Н. И. Филогения и систематика рода Delphinium L. // Бот. журн., 1973. Т. 58, № 12. С. 1710–1722.
Малютин Н. И. Система рода Delphinium (Ranunculaceae), основанная на морфологических признаках семян // Бот. журн., 1987. Т. 72, № 5. С. 683–693.
Малютин Н. И. Многолетние дельфиниумы. М.: Агропромиздат, 1992. 56 с.
Márquez F., Lozada M., Idaszkin Y. L., González-José R., Bigatti G. 2022. Cannabis varieties can be distinguished by achene shape using geometric morphometrics. Cannabis Cannabinoid Res. 7(4): 409–414. DOI: 10.1089/can.2020.0172
Mijnsbrugge K. V., Clercq R. L., Michiels B. 2016. Dissection of leaf morphological traits from isolated and declined relict populations of Ulmus laevis reveals putative random ecotype. Plant Syst. Evol. 302(2): 219–229. DOI: 10.1007/s00606-015-1255-5
Miljković D., Stefanović M., Orlović S., Neđić M. S., Kesić L., Stojnić S. 2019. Wild cherry (Prunus avium (L.) L.) leaf shape and size variations in natural populations at different elevations. Alp. Botany 129: 163–174. DOI: 10.1007/s00035-019-00227-1
Murtazaliev R. A., Luferov A. N. 2021. A new species of Delphinium L. (Ranunculaceae) from Dagestan (Eastern Caucasus). Turczaninowia 24, 4: 114–122. DOI: 10.14258/turczaninowia.24.4.11
Neto L. M., van den Berg C., Forzza R. C. 2019. Linear and geometric morphometrics as tools to resolve species circumscription in the Pseudolaelia vellozicola complex (Orchidaceae, Laeliinae). Plant Ecol. Evol. 152(1): 53–67. DOI: 10.5091/plecevo.2019.1531
Невский С. А. Живокость или Шпорник – Delphinium L. // Флора СССР. Т. 7. М.; Л.: Изд-во АН СССР, 1937. С. 101–183.
Plants of the World Online [2023]. Facilitated by the Royal Botanic Gardens, Kew. Published on the Internet. URL: https://powo.science.kew.org (Accessed 10 May 2023).
Ronquist F., Huelsenbeck J. P. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19(12): 1572–1574. DOI: 10.1093/bioinformatics/btg180
Strelin M. M., Cosacov A., Chalcoff V. R., Maubecin C. C., Sérsic A. N., Benitez-Vieyra S. M. 2021. The role of ontogenetic allometry and nonallometric flower shape variation in species-level adaptive diversification – Calceolaria polyrhiza (Calceolariaceae) as a case study. Evol. Dev. 23: 231–243. DOI: 10.1111/ede.12363
Tutin T. G., Burges N. A., Edmondson J. R., Chater A. O., Heywood V. H., Moore D. M., Akeroyd J. R., Valentine D. H., Walters S. M., Webb D. A., Newton M. E., Mill R. R. 1993. Flora Europaea. Vol. 1: Psilotaceae to Platanaceae. New York: Cambridge University Press. 629 pp.
Цвелёв Н. Н. О некоторых родах семейства Лютиковых (Ranunculaceae) в Восточной Европе // Бот. журн., 1996. Т. 81, № 12. С. 112–122.
Цвелёв Н. Н. Живокость – Delphinium L. // Флора Восточной Европы. Т. 10. СПб.: Мир и семья; Изд-во СПХФА, 2001. С. 66–74.
Васильев А. Г., Васильева И. А., Шкурихин А. О. Геометрическая морфометрия: от теории к практике. М.: Тов-во науч. изд. КМК, 2018. 471 с.
von Balthazar M., Endress P. K., Qiu Y.-L. 2000. Phylogenetic relationships in Buxaceae based on nuclear internal transcribed spacers and plastid ndhF sequences. Int. J. Plant Sci. 161(5): 785−792. DOI: 10.1086/314302
WCVP [2023]. World Checklist of Vascular Plants, version 2.0. Facilitated by the Royal Botanic Gardens, Kew. Published on the Internet. URL: http://wcvp.science.kew.org (Accessed 10 May 2023).
Wen J., Zimmer E. 1996. Phylogeny and biogeography of Panax L. (the ginseng genus, Araliaceae): inferences from ITS sequences of nuclear ribosomal DNA. Mol. Phylogenet. Evol. 6(2): 167–177. DOI: 10.1006/mpev.1996.0069
White T. J., Bruns T., Lee S., Taylor J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR Protocols: a guide to methods and applications. M. A. Innis, D. H. Gelfand, J. J. Shinsky, T. J. White (eds.). San Diego: Academic Press. Pp. 315−322.
Еленевский А. Г., Буланый Ю. И., Радыгина В. И. Определитель сосудистых растений Саратовской области. Саратов: ИП Баженов, 2009. 248 с.
Published
2023-07-01
How to Cite
Kashin A. S., Bogoslov A. V., Parkhomenko A. S., Shilova I. V., Kritskaya T. A., Murtazaliev R. A. Geometric morphometrics and phylogenetic analysis of Delphinium taxa from south of Russia // Turczaninowia, 2023. Vol. 26, № 2. P. 59-81 DOI: 10.14258/turczaninowia.26.2.4. URL: http://turczaninowia.asu.ru/article/view/13368.
Section
Science articles