SCoT markers efficiency for characterizing the intraspecific genetic diversity of Cyclamen coum, Helleborus caucasicus, Galanthus woronowii, Paeonia caucasica
UDC 582.6/.9+57.574.3+575.2
Abstract
Creating strategies of rare and endangered plants conservation requires studying the intraspecific genetic diversity of each particular species. Thus, efficient marker systems are necessary for implementing these objectives. In this study, the efficiency of 36 SCoT markers were evaluated for characterizing the intraspecific genetic diversity of Cyclamen сoum Mill., Helleborus caucasicus A. Brown, Galanthus woronowii Losinsk., Paeonia caucasica Schipcz. collected from different habitats of the Sochi National Park. Single markers, such as SCoT16 (58,2 %), SCoT6 (50,3 %), SCoT7 (49,6 %), SCoT8 (48,1 %), SCoT30 (42,8 %), SCoT29 (41,1 %), and SCoT20 (39,3 %) showed high levels of polymorphism, indicating good applicability of these markers to assess the intraspecific genetic diversity of the studied of the Western Caucasus flora species. In addition, the results of the study are important for the implementing conservation measures for these species and combating genetic erosion.
Downloads
Metrics
References
Arif M., Zaidi N. W., Singh Y. P., Haq Q. M. R., Singh U. S. 2009. A comparative analysis of ISSR and RAPD markers for study of genetic diversity in Shisham (Dalbergia sissoo). Plant Mol. Biol. Rep. 27(4): 488–495. DOI: 10.1007/s11105-009-0097-0
Астапов M. Б., Лозовой С. П., Литвинская С. A. Введение // Красная книга Краснодарского края. Растения и грибы. Отв. Ред. С. А. Литвинская. 3-е изд. Краснодар: Администрация Краснодарского края, 2017. 850 с.
Bassarello C., Muzashvili T., Skhirtladze A., Kemertelidze E., Pizza C., Piacente S. 2008. Steroidal glycosides from the underground parts of Helleborus caucasicus. Phytochemistry 69(5): 1227–1233. DOI: 10.1016/j.phytochem.2007.11.007
Bokov D. O., Krasikova M. K., Sergunova E. V., Bobkova N. V., Kovaleva Tyu., Bondar A. A., Marakhova A. I., Morokhina S. L., Krasnyuk I. I., Moiseev D. V. 2020. Pharmacognostic, phytochemical and ethnopharmacological potential of Cyclamen coum Mill. Pharmacogn. J. 12(1): 204–212. DOI: 10.5530/pj.2020.12.31
Bokov D. O., Samylina I. A., Nikolov S. D. 2017. Macroscopic and microscopic evaluation of Galanthus woronowii Losinsk. and Galanthus nivalis L. homeopathic crude herbal drugs. Int. J. Pharmacogn. Phytochem. Res. 9(1): 58–64. DOI: 10.25258/ijpapr.v9i1.8041
Чукуриди С. С., Бакалов А. Н. Состояние естественных популяций и особенности выращивания в культуре морозника кавказского Helleborus caucasicus var. flavor-guttatus Br. и скополии карниолийской Scopolia carniolica Jacq. // Субтропическое декоративное садоводство, 2009. Т. 1(42). С. 188–192.
Collard B. C. Y., Mackill D. J. 2009. Start Codon Targeted (SCoT) Polymorphism: A simple, novel DNA marker technique for generating gene-targeted markers in plants. Plant Mol. Biol. Rep. 27: 86–93. DOI: 10.1007/s11105-008-0060-5
Dall’Acqua S., Castagliuolo I., Brun P., Ditadi F., Palù G., Innocenti G. 2010. Triterpene glycosides with in vitro anti-inflammatory activity from Cyclamen repandum tubers. Carbohydr. Res. 345(5): 709–714. DOI: 10.1016/j.carres.2009.12.028
Davis A. P. 2006. The genus Galanthus-snowdrops in the wild. In: M. Bishop, A. P. Davis, J. Grimshaw (eds.). Snowdrops, A Monograph of Cultivated Galanthus. Cheltenham: Griffin Press Publishing Ltd. Pp. 9–63.
Deng R. X., Yang X., Wang Y. X., Du M. Z., Hao X. T., Liu P. 2018. Optimization of ultrasound‐assisted extraction of monoterpene glycoside from oil Peony seed cake. J. Food Sci. 83(12): 2943–2953. DOI: 10.1111/1750-3841.14378
Doyle J. J. 1990. Isolation of plant DNA from fresh tissue. Focus 12: 13–15.
Etminan A., Pour-Aboughadareh A., Mohammadi R., Ahmadi-Rad A., Noori A., Mahdavian Z., Moradi Z. 2016. Applicability of start codon targeted (ScoT) and inter-simple sequence repeat (ISSR) markers for genetic diversity analysis in durum wheat genotypes. Biotechnol. Biotechnol. Equip. 30: 1075–1081. DOI: 10.1080/13102818.2016.1228478
Fassou G., Kougioumoutzis K., Iatrou G., Trigas P., Papasotiropoulos V. 2020. Genetic diversity and range dynamics of Helleborus odorus subsp. cyclophyllus under different climate change scenarios. Forests 11(6): 620. DOI: 10.3390/f11060620
Фоменко Е. В., Постарнак Ю. А. Сравнительная характеристика морфологических особенностей и онтогенеза Cyclamen coum Mill. в долинах рек Псекупс, Туапсе и Пшеха Краснодарского края // Известия Самарского научного центра Российской академии наук, 2011. № 13(5–2). С. 123–127.
Genç N. Yıldız İ., Karan T., Eminağaoğlu Ö., Erenler R. 2019. Antioxidant activity and total phenolic contents of Galanthus woronowii (Amaryllidaceae). Turk. J. Biod. 2(1): 1–5.
Gorji A. M., Poczai P., Polgar Z., Taller J. 2011. Efficiency of arbitrarily amplified dominant markers (SCoT, ISSR and RAPD) for diagnostic fingerprinting in tetraploid potato. Am J Potato Res 88: 226–237. DOI: 10.1007/s12230-011-9187-2
Gupta P. K., Rustgi S. 2004. Molecular markers from the transcribed/expressed region of the genome in higher plants. Funct. Integr. Geonomics 4: 139–62. DOI: 10.1007/s10142-004-0107-0
Gupta V., Jatav P. K., Haq S. U., Verma K. S., Kaul V. K., Kothari S. L., Kachhwaha, S. 2019. Translation initiation codon (ATG) or SCoT markers-based polymorphism study within and across various Capsicum accessions: insight from their amplification, cross-transferability and genetic diversity. J. Genet. 98: 61. DOI: 10.1007/s12041-019-1095-0
Hajibarat Z., Saidi A., Hajibarat Z., Talebi R. 2015. Characterization of genetic diversity in chickpea using SSR markers, start codon targeted polymorphism (ScoT) and conserved DNA-derived polymorphism (CDDP). Physiol. Mol. Biol. Plants 21(3): 365–373. DOI: 10.1007/s12298-015-0306-2
Hirano R., Htun O. T., Watanabe K. N. 2010. Myanmar mango landraces reveal genetic uniqueness over common cultivars from Florida, India, and Southeast Asia. Genome 53: 321–330. DOI: 10.1139/g10-005
Hou X., Wang J., Jia T., Zhang Y. Q., Hou J., Li J. J. 2011. Orthogonal optimization of SCoT-PCR system and primer screening of tree peony. Acta Agric. Bor. Sin. 26(5): 92–96.
Hou Y. C., Yan Z. H., Wei Y. M., Zheng Y. L. 2005. Genetic diversity in barley from west China based on RAPD and ISSR analysis. Barley Genet. Newsl. 35(1): 9–22.
Howes M.-J. R., Perry E. 2011. The role of phytochemicals in the treatment and prevention of dementia. Drugs Aging 28: 439–468. DOI: 10.2165/11591310-000000000-00000
Ishizaka H., Yamada H., Sasaki K. 2002. Volatile compounds in the flowers of Cyclamen persicum, C. purpurascens and their hybrids. Sci. Hortic. 94(1–2): 125–135. DOI: 10.1016/S0304-4238(01)00362-4
Ivanova A., Delcheva I., Tsvetkova I., Kujumgiev A., Kostova I. 2002. GC-MS analysis and anti-microbial activity of acidic fractions obtained from Paeonia peregrina and Paeonia tenuifolia roots. Z. Naturforsch. 57(7–8): 624–628. DOI: 10.1515/znc-2002-7-813
Jin Z. 2013. Amaryllidaceae and Sceletium alkaloids. Nat. Prod. Rep. 30: 849–868. DOI: 10.1039/C3NP70005D
Karimi E., Jaafar H. Z. E., Aziz M. A., Taheri S., AzadiGonbad R. 2014. Genetic relationship among Labisia pumila (Myrsinaceae) species based on ISSR-PCR. Genet. Mol. Res. 13: 3301–3309. DOI: 10.4238/2014.April.29.8
Kress W. J., Erickson D. L. 2012. DNA barcodes: methods and protocols. Methods Mol. Biol. 858: 3–8. DOI: 10.1007/978-1-61779-591-6_1
Lim M. Y., Jana S., Sivanesan I., Park H. R., Hwang J. H., Park Y. H., Jeong B. R. 2013. Analysis of genetic variability using RAPD markers in Paeonia spp. Grown in Korea. Kor. J. Hort. Sci. Technol. 31(3): 322–327. DOI: 10.7235/hort.2013.12210
Литвинская С. А. Цикламен кавказский // Красная книга Российской Федерации. Растения и грибы. Под ред. Л. В. Бардунова, В. С. Новикова. М.: Тов-во науч. изд. КМК, 2008. С. 462–463.
Литвинская С. А. Зимовник кавказский. // Красная книга Краснодарского края. Растения и грибы. Отв. ред. С. А. Литвинская. 3-е изд. Краснодар: Администрация Краснодарского края, 2017. С. 151–153.
Литвинская С. А. Пион кавказский // Красная книга Краснодарского края. Растения и грибы. Отв. ред. С. А. Литвинская. 3-е изд. Краснодар: Администрация Краснодарского края, 2017. С. 185–186.
Luchkina M. A. 2010. Comparative ontogenic analysis of Cyclamen coum Mill. and Cyclamen kuznetzovii Kotov et Czernov. Moscow Univ. Biol.Sci. Bull. 65: 84–89. DOI: 10.3103/S0096392510020094
Luo C., He X.-H., Chen H., Hu Y. and Ou S.-J. 2012. Genetic relationship and diversity of Mangifera indica L., revealed through ScoT analysis. Genet. Resour. Crop. Evol. 59: 1505–1515.
Маляровская В. И., Самарина Л. С., Рахмангулов Р. С., Конинская Н. Г. Изучение этапов микроразмножения Galánthus woronowii Losinsk. // Плодоводство и ягодоводство России, 2018. № 55. С. 71–77. DOI: 10.31676/2073-4948-2018-55-71-77
Marker Efficiency Calkulator. [2021] URL: https://irscope.shinyapps.io/iMEC/ (Accessed 08 September 2021).
Martins M., Sarmento D., Oliveira M. M. 2004. Genetic. stability of micropropagated almond plantlets, as assessed by RAPD and ISSR markers. Plant Cell Rep. 23(7): 492–496. DOI: 10.1007/s00299-004-0870-3
Martucciello S., Paolella G., Muzashvili T., Skhirtladze A., Pizza C., Caputo I., Piacente S. 2018. Steroids from Helleborus caucasicus reduce cancer cell viability inducing apoptosis and GRP78 down-regulation. Chem. Biol. Interact. 279: 43–50. DOI: 10.1016/j.cbi.2017.11.002
Михеев А. Д. Подснежник Воронова // Красная книга Российской Федерации. Растения и грибы. Под ред. Л. В. Бардунова, В. С. Новикова. М.: Тов-во науч. изд. КМК, 2008. С. 54–55.
Михеев А. Д. Пион кавказский // Красная книга Российской Федерации. Растения и грибы. Под ред. Л. В. Бардунова, В. С. Новикова. М.: Тов-во науч. изд. КМК, 2008. С. 422–423.
Mukherjee A., Sikdar B., Ghosh B., Banerjee A., Ghosh E., Bhattacharya M., Roy S. C. 2013. RAPD and ISSR analysis of some economically important species, varieties, and cultivars of the genus Allium (Alliaceae). Turk. J. Bot. 37(4): 605–618. DOI: 10.3906/bot-1208-18
Muzashvili T., Skhirtladze A., Sulakvelidze T., Benidze M., Mshviladze V., Legault J., Pichette A., Kemertelidze E. 2006. Cytotoxic activity of Helleborus caucasicus A. Br. Georg. Chem. J. 6: 684–685.
Naderi R., Alaey M., Khalighi A., Hassani M. E., Salami S. A. 2009. Inter-and intra-specific genetic diversity among cyclamen accessions investigated by RAPD markers. Sci. Hortic. 122(4): 658–661. DOI: 10.1016/j.scienta.2009.06.020
Nath V. S., Hegde V. M., Jeeva M. L., Misra R. S., Veena S. S., Raj M., Nair S. S. D. 2015. Genetic diversity of Phytophthora colocasiae causing taro leaf blight, analysis using start codon targeted (SCoT) polymorphism. J. Root Crops 39: 168–177.
Öztürk D. 2020. Cyclamen coum subsp. coum Miller (Primulaceae/Çuhaçiçeğigiller) Taksonunun Anatomik, Mikromorfolojik ve Palinolojik Karakterlerinin İncelenmesi. SDÜ Fen. Bil. Enst. Der.24(2): 281–288. DOI: 10.19113/sdufenbed.652819
Parker S. May B., Zhang C., Zhang A. L., Lu C., Xue C. C. 2016. A pharmacological review of bioactive constituents of Paeonia lactiflora Pallas and Paeonia veitchii Lynch. Phytother. Res. 30(9): 1445–1473. DOI: 10.1002/ptr.5653
Peakall R., Smouse P. E. 2006. GENALEX 6: Genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes 6: 288–295. DOI: 10.1111/j.1471-8286.2005.01155.x
Peakall R., Smouse P. E. 2012. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research – an update. Bioinformatics 28: 2537–2539. DOI: 10.1093/bioinformatics/bts460
Prange A. N. S., Serek M., Bartsch M., Winkelmann T. 2010. Efficient and stable regeneration from protoplasts of Cyclamen coum Miller via somatic embryogenesis. Plant Cell Tiss. Organ Cult. 101, 2: 171–182. DOI: 10.1007/s11240-010-9674-z
Rahbek C., Borregaard M. K., Antonelli A., Colwell R. K., Holt B. G., Nogues-Bravo D., Rasmussen C. M., Richardson K., Rosing M. T., Whittaker R. J., Fjeldså J. 2019. Building Mountain biodiversity: Geological and evolutionary processes. Science 365(6458): 1114–1119. DOI: 10.1126/science.aax0151
Samarina L. S., Malyarovskaya V. I., Reim S., Yakushina L. G., Koninskaya N. G., Klemeshova K. V. Shkhalakhova R. M., Matskiv A. O., Shurkina E. S., Gabueva T. Y., Slepchenko N. A., Ryndin A. V. 2021. Transferability of ISSR, SCoT and SSR markers for Chrysanthemum × morifolium Ramat and genetic relationships among commercial Russian cultivars. Plants 10(7): 1302. DOI: 10.3390/plants10071302
Samarina L. S., Matskiv A. O., Shkhalakhova R. M., Koninskaya N. G., Hanke M.-V., Flachowsky H., Shumeev A. N., Manakhova K. A., Malyukova L. S., Liu S., Zhu J., Gvasaliya M. V., Malyarovskaya V. I., Ryndin A. V., Pchikhachev E. K., Reim S. 2022. Genetic diversity and genome size variability in the Russian genebank collection of Tea plant [Camellia sinensis (L). O. Kuntze]. Front. Plant Sci. 12: 800141. DOI: 10.3389/fpls.2021.800141
Sarikaya B. B., Kaya G. I., Onur M. A., Bastida J., Somer N. U. 2013. Phytochemical investigation of Galanthus woronowii. Biochem. Syst. Ecol. 51: 276–279.
Satya P., Karan M., Jana S., Mitra S., Sharma A., Karmakar P. G., Ray D. P. 2015. Start codon targeted (SCoT) polymorphism reveals genetic diversity in wild and domesticated populations of ramie (Boehmeria nivea L. Gaudich.), a premium textile fiber producing species. Meta gene 3: 62–70. DOI: 10.1016/j.mgene.2015.01.003
Шумкова О. А., Криворотов С. Б., Букарева О. В., Архипов Р. А. К изучению распространения охраняемых растений на Северо-Западном Кавказе // Вестник Тверского государственного университета. Серия Биология и экология, 2019. № 3. С. 55. DOI: 10.26456/vtbio111
Simsek O. Curuk P., Aslan F., Bayramoglu M., Izgu T., da Silva J. A T., Kacar Y. A., Mendi Y. Y. 2017. Molecular characterization of Cyclamen species collected from different parts of Turkey by RAPD and SRAP markers. Biochem. Genet. 55(1): 87–102. DOI: 10.1007/s10528-016-9770-9
Son J. H., Park K. C., Lee S. I., Kim J. H., Kim N. S. 2012. Species relationships among Allium species by ISSR analysis. Hortic. Environ. Biotechnol. 53(3): 256–262. DOI: 10.1007/s13580-012-0130-3
Супрун И. И., Степанов И. В., Слепченко Н. А., Маляровская В. И., Коломиец Т. М., Самарина Л. С. Апробация ISSR ДНК-маркеров для генотипирования вида Galánthus woronowii Losinsk. и анализ генетической стабильности растений, полученных в культуре in vitro // Политематический сетевой электронный научный журнал Кубанского государственного аграрного университета, 2017. № 133. C. 1166–1178. DOI: 10.21515/1990-4665-133-088
Тимухин И. Н. Флора сосудистых растений Сочинского национального парка // Инвентаризация основных таксономических групп и сообществ, созологические исследования Сочинского национального парка – первые итоги первого в России национального парка. № 2. Сочи, 2006. С. 41–84.
Тимухин И. Н., Туниев Б. С. Цикламен кавказский // Красная книга Краснодарского края. Растения и грибы. Отв. ред. С. А. Литвинская. 3-е изд. Краснодар: Администрация Краснодарского края, 2017.С. 225–227.
Тимухин И. Н., Туниев Б. С. Подснежник Воронова // Красная книга Краснодарского края. Растения и грибы. Отв. ред. С. А. Литвинская. 3-е изд. Краснодар: Администрация Краснодарского края, 2017. С. 454–455.
Ухова М. О., Литвинская С. А. Дантово ущелье как потенциальная территория особого природоохранного значения в рамках Изумрудной сети Европейской России // Эколого-географические проблемы регионов России: материалы X всерос. науч.-практ. конф. с междунар. участием, посвящ. 100-летию со дня рождения д. г. н., профессора В. И. Прокаева и 90-летию естественно-географического факультета СГСПУ. Самара, 2019. С. 90–92.
Вахрушева Л. П., Ена А. В., Болдырев Е. В. Cyclamen coum в Крыму: оценка морфологических критериев видовой принадлежности возрастных состояний // Экосистемы, 2009. № 1(20). С. 74–81.
Wu J.-M., Li Y.-R., Yang L.-T., Fang F.-X., Song H.-z., Tang H.-Q., Wang M., Weng M.-L. 2013. cDNA-SCot, a novel rapid method for analysis of gene differential expression in sugarcane and other plants. Aust. J. Crop Sci. 7: 659.
Wu S. H., Wu D. G., Chen Y. W. 2010. Chemical constituents and bioactivities of plants from the genus Paeonia. Chem. Biodivers. 7(1): 90–104. DOI: 10.1002/cbdv.200800148
Xiong F. Q., Zhong R. C., Han Z. Q., Jiang J., He L. Q., Zhuang W. J., Tang R. H. 2011. Start codon targeted polymorphism for evaluation of functional genetic variation and relationships in cultivated peanut (Arachis hypogaea L.) genotypes. Mol. Biol. Rep. 38: 3487–3494. DOI: 10.1007/s11033-010-0459-6
Yang S., Shi S., Gong X., Zhou R. 2005. Genetic diversity of Paeonia delavayi as revealed by ISSRs. Biodiv. Sci. 13(2): 105–111. DOI: 10.1360/biodiv.040179
Зубов Д. А., Кашеваров Г. П., Диденко С. Я., Блюм О. Б. Анализ ДНК-полиморфизма интродуцированных видов рода Galanthus L. (Amaryllidaceae J. St.-Hil.) с помощью RAPD-маркеров // Інтродукція рослин, 2011. № 52(4). С. 53–61. DOI: 10.5281/zenodo.2544348
Turczaninowia is a golden publisher, as we allow self-archiving, but most importantly we are fully transparent about your rights.
Authors may present and discuss their findings ahead of publication: at biological or scientific conferences, on preprint servers, in public databases, and in blogs, wikis, tweets, and other informal communication channels.
Turczaninowia allows authors to deposit manuscripts (currently under review or those for intended submission to Turczaninowia) in non-commercial, pre-print servers such as ArXiv.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).