Цитогенетический полиморфизм семенного потомства интродуцентов на примере Rhododendron ledebourii Pojark.

  • J.V. Burmenko Белгородский государственный национальный исследовательский университет Email: burmenko@bsu.edu.ru
  • T.V. Baranova Воронежский государственный университет Email: tanyavostric@rambler.ru
  • V.N. Kalaev Воронежский государственный университет Email: tanyavostric@rambler.ru
  • V.N. Sorokopudov Всероссийский селекционно-технологический институт садоводства и питомниководства Email: sorokopud2301@mail.ru
Ключевые слова: интродуцент, митотическая активность, остаточные ядрышки, патологии митоза, семенное потомство, цитогенетический полиморфизм, ядрышковые характеристики

Аннотация

Проведено исследование цитогенетического полиморфизма семенного потомства рододендрона Ледебура (Rhododendron ledebourii Pojark.) в условиях Центрального Черноземья. По совокупности цитогенетических показателей проростки разделены на группы, различающиеся по степени стабильности генетического материала (слабомутабильная, мутабильная и промежуточные). Дана цитогенетическая характеристика каждой выделенной группы. У семенного потомства мутабильной группы выявлено снижение митотической активности (6,7 ± 0,2 %); возрастание числа клеток на стадии профазы митоза (55,3 ± 2,3 %); увеличение уровня патологий митоза (4,0 ± 0,6 %), указывающее на высокую цитогенетическую нестабильность; повышение уровня клеток с остаточными ядрышками (13,4 ± 1,4 %) и площади поверхности одиночных ядрышек (79,4 ± 1,8 %), что связано с изменением биосинтетических процессов у проростков данной группы. Слабомутабильная группа проростков характеризуется повышенной митотической активностью (9,1 ± 0,2 %) и низкими значениями цитогенетических нарушений (1,2 ± 0,2 %). В промежуточных группах отмечаются разнонаправленные тенденции изменения цитогенетических показателей: две из них сходны с мутабильной, две другие – со слабомутабильной группой. Сходные с мутабильной промежуточные группы характеризуются более низким (по сравнению с мутабильной группой) уровнем патологий митоза и клеток с остаточными ядрышками, более высокой площадью поверхности одиночных ядрышек и большим числом ядрышек активного типа. Промежуточные группы, близкие по своим цитогенетическим характеристикам к слабомутабильной, имеют по сравнению с ней более низкий митотический индекс, большую площадь поверхности одиночных ядрышек, в данных группах возможна задержка клеток на стадии профазы митоза и возрастание числа метафаз-анафаз с остаточными ядрышками. Сравнение результатов эксперимента с ранее полученными данными для других древесных растений показало, что в мутабильных группах проростков увеличивается уровень патологий митоза и расширяется их спектр с преобладанием нарушений, связанных с фрагментацией хромосом. Слабомутабильная группа характеризуется минимальными значениями патологий митоза с большим числом мостов в спектре нарушений (71,3 %)

Скачивания

Данные скачивания пока недоступны.

Metrics

Загрузка метрик ...

Литература

Alov I. A. 1972. Cytofisiologiya i patologiya mitosa [Cytophysiology and pathology of mitosis]. Medicine, Moscow, 232 pp. [In Russian]. (Алов И. А. Цитофизиология и патология митоза. М.: Медицина, 1972. 232 с.)

Arkhipchuk V. V. 1995. The use of nucleolus characteristics in biotesting. Cytology and genetics 29, 3: 6–9 [In Russian]. (Архипчук В. В. Использование ядрышковых характеристик в биотестировании // Цитология и генетика, 1995. Т. 29, № 3. С. 6–9).

Butorina А. K., Isakov Yu. N. 1989. Puffing of chromosomes in the metaphase – telophase of the mitotic cycle in Quercus robur. Reports of the Academy of Science USSR 9, 4: 987–988.

Butorina A. K., Kalaev V. N., Vostrikova T. V., Myagkova O. E. 2000. Cytogenetic characteristics of seed progeny of Quercus robur L., Pinus sylvestris L., and Betula pendula Roth under conditions of anthropogenic contamination in the city of Voronezh. Cytology 42(2): 196–201.

Butorina А. К., Kosichenko N. E., Isakov Yu. N., Pozhidaeva I. M. 1997. The effects of irradiation from the Chernobyl nuclear power plant accident on the cytogenetic behaviour and anatomy of trees. In: Cytogenetic Studies of Forest Trees and Shrub Species. Croatia, Zagreb, 211–226 pp.

Belousov M. V., Mashkina O. S., Popov V. N. 2012. Cytogenetic response of Scots pine (Pinus sylvestris L., 1753) (Pinaceae) to heavy metals. Comparative Cytogenetics 6(1): 93–106. DOI: 10.3897/CompCytogen.v6i1.2017

Chelidze, V. P., Zatsepina O. V. 1988. Morpho-functional classification of nucleoli. Successes of modern biology 105(2): 252–267 [In Russian]. (Челидзе В. П., Зацепина О. В. Морфофункциональная классификация ядрышек // Успехи современной биологии, 1988. Т. 105, вып. 2. С. 252–267).

De Hayes D. H., Hawley G. L. 1992. Genetic implications in the decline of red spruce. Water, Air, & Soil Pollution 62, 3–4: 233–248.

Gao L. M., Li D. Z., Zhang C. Q., Yang J. B. 2002. Infrageneric and sectional relationships in the genus Rhododendron (Ericaceae) inferred from ITS sequence data. Acta Botanica Sinica 44(11): 1351–1356.

Geburek Th., Scholz F., Knabe W., Vornweg A. 1987. Genetic studies by isozyme gene loci on tolerance and sensitivity in an air polluted Pinus sylvestris field trial. Silvae Genetica 36(2): 49–53.

Hertel H. 1992. Aims and results of basic research in the Institute of forest tree breeding in Waldsieversdorf, Germany. 2. The use of enzyme gene marks for practical breeding tasks. Silvae genetica 41(3): 201–204.

Hsu T. S., Humphferey R. M., Somers C. E. 1964. Persistent nucleoli in animal cells following treatments with fluorodeoxyuridine and thymedine. Experimental cell research 33(1–2): 74–77.

Huang C. C., Hung K. H., Hwang C. C., Huang J. C., Lin H. D., Wang W. K., Wu P. Y., Hsu T. W., Chiang T. Y. 2011. Genetic population structure of the alpine species Rhododendron pseudochrysanthum sensu lato (Ericaceae) inferred from chloroplast and nuclear DNA. BMC evolutionary biology 11(1): 108. DOI: 10.1186/1471-2148-11-108

Kalaev V. N., Butorina A. K. 2006. Cytogenetic Effect of Radiation in Seed of Oak (Quercus robur l.) Trees Growing on Sites Contaminated by Chernobyl Fallout. Silvae Genetica 55(1–6): 93–101.

Kalaev V. N., Karpova S. S., Artyukhov V. G. 2010. Cytogenetic Characteristics of Weeping Birch (Betula pendula Roth) Seed Progeny in Different Ecological Conditions. Bioremediation, biodiversity & bioavailability 4(1): 77–83.

Kalaev V. N., Popov A. A. 2014 a. Cytogenetic polymorphism of sprouted seeds of trees of Quercus robur L. on territories with different level of anthropogenic pollution. Problems of regional ecology 2: 176–190 [In Russian]. (Калаев В. Н., Попова А. А. Цитогенетический полиморфизм проростков семян деревьев дуба черешчатого (Quercus robur L.) на территориях с разным уровнем антропогенного загрязнения // Проблемы региональной экологии, 2014. № 2. С. 176–190).

Kalaev V. N., Popov A. A. 2014b. Cytogenetic features and morphological parameters of seed progeny of trees of Quercus robur L. growing on territories with different level of anthropogenic pollution. Bulletin of Voronezh state University. Chemistry Series. Biology. Pharmacy 4: 63–72 [In Russian]. (Калаев В. Н., Попова А. А. Цитогенетические характеристики и морфологические показатели семенного потомства деревьев дуба черешчатого (Quercus Robur L.), произрастающих на территориях с разным уровнем антропогенного загрязнения // Вестник Воронежского государственного университета. Серия Химия. Биология. Фармация, 2014. № 4. С. 63–72).

Karpova E. A., Karakulov A. V. 2011. Phenolic compounds of closely related species of Rhododendron L. (Ericaceae). Turczaninowia 14, 3: 145–149 [In Russian]. (Карпова Е. А., Каракулов А. В. Фенольные соединения близкородственных видов рода Rhododendron L. (Ericaceae) // Turczaninowia, 2011. Т. 14, вып. 3. С. 145–149).

Kulaichev A. P. 1996. Methods and tools for data analysis in the Windows environment. Stadia 6.0. Computer Science and computers, Moscow, 257 pp. [In Russian]. (Кулаичев А. П. Методы и средства анализа данных в операционной среде Windows. Stadia 6.0. М.: Информатика и компьютеры, 1996. 257 с.).

Korshikov I. I., Tkacheva Yu. A., Privalikhin S. N. 2012.Cytogenetic Abnormalities in Norway Spruce (Picea abies (L.) Karst.) Seedlings from Natural Populations and an Introduction Plantation. Cytology and Genetics 46(5): 280–284. DOI: 10.3103/S0095452712050064

Kutsev M. G., Karakulov A. V. 2010. Reconstruction of the phylogeny of the genus Rhododendron L. (Ericaceae) flora of Russia on the basis of the sequences of spacers ITS1-ITS2. Turczaninowia 13, 3: 59–62 [In Russian]. (Куцев М. Г., Каракулов А. В. Реконструкция филогении рода Rhododendron L. (Ericaceae) флоры России на основе последовательностей спейсеров ITS1-ITS2 // Turczaninowia, 2010. Т. 13, вып. 3. С. 59–62).

Lakin G. F. 1990. Biometriya [Biometrics]. Higher school, Moscow, 352 pp. [In Russian]. (Лакин Г. Ф. Биометрия. М.: Высшая школа, 1990. 352 с.).

Lanying Z., Yongqing W., Li Z. 2008.Genetic diversity and relationship of Rhododendron species based on RAPD analysis. American-Eurasian J. Agric. Environ. Sci. 3: 626–631.

Li D. Z., Gao L. M., Li H. T., et al. 2011. Comparative analysis of a large dataset indicates that internal transcribed spacer (ITS) should be incorporated into the core barcode for seed plants. Proceedings of the National Academy of Sciences 108(49): 19641–19646. DOI: 10.1073/pnas.1104551108

Löytynoja A., Goldman N. 2005. An algorithm for progressive multiple alignment of sequences with insertions. Proceedings of the National academy of sciences of the United States of America 102(30): 10557–10562.

Mashkina O. S., Butorina А. K., Tabackaja T. M. 2011. Karelian Birch as a Model for Studying Genetic and Epigenetic Variation Related to the Formation of Patterned Wood. Russian journal of genetics 47(8): 951. DOI: 10.1134/S1022795411080126

Mashkina O. S., Kalaev V. N., Muray L. P., Lelikova E. S. 2009. Cytogenetic response of seed progeny of Scots pine to combined anthropogenic pollution in the area of Novolipetsk metallurgical combine. Ecologichskaya genetica [Ecological genetics] 7, 3: 17–29 [In Russian]. (Машкина О. С., Калаев В. Н., Мурая Л. С., Леликова Е. С. Цитогенетические реакции семенного потомства сосны обыкновенной на комбинированное антропогенное загрязнение в районе Новолипецкого металлургического комбината // Экологическая генетика, 2009. Т. 7, № 3. С. 17–29).

Mashkina O. S., Kuznetsova N. F., Isakov Yu. N., Butorina А. K. 2009. Self-fertility in Scots Pine as a mechanism of resistance to chemical mutagens. Russian journal of ecology 40(6): 399. DOI: 10.1134/S1067413609060046

Mizuta D., Nakatsuka A., Kobayashi N. 2008. Development of multiplex PCR markers to distinguish evergreen and deciduous azaleas. Plant breeding 127(5): 533–535. DOI: 10.1111/j.1439-0523.2008.01487.x

Motohashi Ts., Smirnov S. V., Kucev M., Shmakov A. I., Kondo K. A. 2014. Study of chromosome numbers of Petasites frigidus (L.) Fries and Petasites radiatus (JF Gmel.) Toman (Asteraceae) of Altai, Russia. Chromosome Botany 9, 3: 65–67. DOI: 10.3199/iscb.9.65

Nickols W. W. 1970. Virus-induced chromosome abnormalities. Ann. Rev. Microbiol. 24: 479–498.

Oudalova A. A., Geras’kin S. A. 2012. The time dynamics and ecological genetic variation of cytogenetic effects in the Scots Pine populations experiencing anthropogenic impact. Biology Bulletin Reviews 2(3), 254–267. DOI: 10.1134/S207908641203005X

Ramzan F., Younis A., Lim K. B. 2017. Application of genomic in situ hybridization in horticultural science. International journal of genomics (2017), ID 7561909, 12 pp. URL: https://doi.org/10.1155/2017/7561909

Sedel’nikova T. S., Muratova E. N., Pimenov A. V. 2011. Variability of chromosome numbers in gymnosperms. Biology Bulletin Reviews 1(2): 100–109. DOI: 10.1134/S2079086411020083.

Sheldon S., Speers W. S., Lehman J. 1961. Nucleolar persistence in embrional carcinoma cells. Experimental cell research 132(1): 185–192.

Simakov E. A. 1983. Postradiation the restoration of cytogenetic damage in seedlings of seeds of various forms of potato. Radiobiology 23(5): 703–706 [In Russian]. (Симаков Е. А. О пострадиацинном восстановлении цитогенетических повреждений в проростках семян разных форм картофеля // Радиобиология, 1983. Т. 23, вып. 5. С. 703–706).

Skaptsov M. V., Kutsev M. G., Krasnoborodkina M. A., Smirnov S. V., Uvarova O. V., Sinitsyna T. A., Kechaykin A. A., Shmakov A. I. 2017a. Sequencing and GO annotation of transcriptome the culture of cells and tissues in vitro Rumex acetosa. Turczaninowia 20, 4: 119–124 [In Russian]. (Скапцов М. В., Куцев М. Г., Краснобородкина М. А., Смирнов С. В., Уварова О. В., Синицына Т. А., Кечайкин А. А., Шмаков А. И. Секвенирование и GO аннотация транскриптома культуры клеток и тканей Rumex acetosa in vitro // Turczaninowia, 2017a. Т. 20, вып. 4. С. 119–124. DOI: 10.14258/turczaninowia.20.4.13.

Skaptsov M. V., Kutsev M. G., Krasnoborodkina M. A., Trosnichkov A. A., Kaygalov I. V., Shmakov A. I. 2017b. Variability of methylation of satellite DNA and mobile genetic elements Rumex acetosa in vitro. In: Problems of botany of South Siberia and Mongolia: Proceedings of the 16th International Scientific and Practical Conference (Barnaul, 5–8 June 2017). Concept, Barnaul, 264–267 pp. [In Russian]. (Скапцов М. В., Куцев М. Г., Краснобородкина М. А., Тросничков А. А., Кайгалов И. В., Шмаков А. И. Изменчивость метилирования сателлитной ДНК и мобильных генетических элементов Rumex acetosa в культуре in vitro // Проблемы ботаники Южной Сибири и Монголии: материалы XVI Междунар. научн.-практ. конф. Барнаул: Концепт, 2017b. С. 264–267).

Skaptsov M. V., Lomonosova M. N., Kutsev M. G., Smirnov S. V., Shmakov A. I. 2017c. The phenomenon of endopolyploidy in some species of the Chenopodioideae (Amaranthaceae). Botany Letters 164(1): 47–53. DOI: 10.1080/23818107.2016.1276475.

Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular biology and evolution 28(10): 2731–2739. DOI:10.1093/molbev/msr121.

Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. 2013. MEGA 6: Molecular evolutionary genetics analysis version 6.0. Molecular biology and evolution 30(12): 2725–2729. DOI: 10.1093/molbev/mst197

Tikhonova N. A., Polezhaeva M. A., Pimenova E. A. 2012. AFLP analysis of the genetic diversity of closely related Rhododendron species of the section Rhodorastra (Ericaceae) from Siberia and the Far East of Russia. Russian journal of genetics 48(10): 985–992. DOI: 10.1134/S1022795412100110.

Vostrikova T. V. 2007. Instability of cytogenetic parameters and genome instability in Betula pendula Roth. Russian Journal of Ecology 38, 2: 80–84. DOI:10.1134/S1067413607020026.

Vostrikova T. V., Butorina A. K. 2006. Cytogenetic responses of birch to stress factors. Biology Bulletin 33(2): 185–190. DOI: 10.1134/S1062359006020142.

Vostrikova T. V., Kalaev V. N. 2010. Cytogenetic analysis of some species of trees and shrubs in urban zone. In: Dendrology in early XXI century: materials of Intern. scientific. read. memory of E. L. Wolf (St. Petersburg, October 6–7). St. Petersburg, 50–53 pp. [In Russian]. (Вострикова Т. В., Калаев В. Н. Цитогенетические характеристики некоторых видов деревьев и кустарников в условиях городской зоны // Дендрология в начале XXI века: материалы Междунар. научн. чтен. памяти Э. Л. Вольфа (Санкт-Петербург, 6–7 октября 2010 г.). СПБ., 2010. С. 50–53).

Опубликован
2018-03-05
Как цитировать
Burmenko J., Baranova T., Kalaev V., Sorokopudov V. Цитогенетический полиморфизм семенного потомства интродуцентов на примере Rhododendron ledebourii Pojark. // Turczaninowia, 2018. Т. 21, № 1. С. 164-173. URL: http://turczaninowia.asu.ru/article/view/3837.
Раздел
Научные статьи